Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nanomicro Lett ; 16(1): 261, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39112731

RESUMO

Micro-light-emitting diodes (µLEDs) have gained significant interest as an activation source for gas sensors owing to their advantages, including room temperature operation and low power consumption. However, despite these benefits, challenges still exist such as a limited range of detectable gases and slow response. In this study, we present a blue µLED-integrated light-activated gas sensor array based on SnO2 nanoparticles (NPs) that exhibit excellent sensitivity, tunable selectivity, and rapid detection with micro-watt level power consumption. The optimal power for µLED is observed at the highest gas response, supported by finite-difference time-domain simulation. Additionally, we first report the visible light-activated selective detection of reducing gases using noble metal-decorated SnO2 NPs. The noble metals induce catalytic interaction with reducing gases, clearly distinguishing NH3, H2, and C2H5OH. Real-time gas monitoring based on a fully hardware-implemented light-activated sensing array was demonstrated, opening up new avenues for advancements in light-activated electronic nose technologies.

2.
Dalton Trans ; 52(19): 6324-6330, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37082962

RESUMO

For an anion exchange membrane water electrolyzer (AEMWE), exploring bifunctional electrodes with low cost and high efficiency is a crucial task for future renewable energy systems. Herein, we report a simple method to fabricate cobalt iron oxyhydroxide (CozFe1-zOxHy) bifunctional electrodes for AEMWEs. The bifunctional electrodes were prepared via one-pot electrodeposition on Ti paper (TP). By adjusting the electrodeposition conditions, the morphology and composition of CozFe1-zOxHy/TP could be controlled. The Co65Fe35OxHy/TP electrode demonstrated the highest activity for overall water electrolysis owing to the maximized synergy effect between Co and Fe. The bifunctional activities of Co65Fe35OxHy/TP were well retained at -50 and 50 mA cm-2 for 12 h. Co65Fe35OxHy/TP, which shows the highest bifunctional activity, was employed in an AEMWE single cell as the anode and cathode. The AEMWE single cell employing Co65Fe35OxHy/TP showed a current density of 0.605 A cm-2 at a cell voltage of 2.0 Vcell. The calculated energy efficiency of the single cell is 55.7% at 2.0 A cm-2, which is comparable with those of the state-of-the-art AEMWE single cells with bifunctional electrodes. Furthermore, the cell voltage of the single cell with Co65Fe35OxHy/TP showed negligible degradation for 50 h at 0.6 A cm-2.

3.
ACS Nano ; 17(5): 4404-4413, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36825770

RESUMO

Noble metal nanoparticle decoration is a representative strategy to enhance selectivity for fabricating chemical sensor arrays based on the 2-dimensional (2D) semiconductor material, represented by molybdenum disulfide (MoS2). However, the mechanism of selectivity tuning by noble metal decoration on 2D materials has not been fully elucidated. Here, we successfully decorated noble metal nanoparticles on MoS2 flakes by the solution process without using reducing agents. The MoS2 flakes showed drastic selectivity changes after surface decoration and distinguished ammonia, hydrogen, and ethanol gases clearly, which were not observed in general 3D metal oxide nanostructures. The role of noble metal nanoparticle decoration on the selectivity change is investigated by first-principles density functional theory (DFT) calculations. While the H2 sensitivity shows a similar tendency with the calculated binding energy, that of NH3 is strongly related to the binding site deactivation due to preferred noble metal particle decoration at the MoS2 edge. This finding is a specific phenomenon which originates from the distinguished structure of the 2D material, with highly active edge sites. We believe that our study will provide the fundamental comprehension for the strategy to devise the highly efficient sensor array based on 2D materials.

4.
Adv Mater ; 35(43): e2206842, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35947765

RESUMO

The sensing performances of gas sensors must be improved and diversified to enhance quality of life by ensuring health, safety, and convenience. Metal-organic frameworks (MOFs), which exhibit an extremely high surface area, abundant porosity, and unique surface chemistry, provide a promising framework for facilitating gas-sensor innovations. Enhanced understanding of conduction mechanisms of MOFs has facilitated their use as gas-sensing materials, and various types of MOFs have been developed by examining the compositional and morphological dependences and implementing catalyst incorporation and light activation. Owing to their inherent separation and absorption properties and catalytic activity, MOFs are applied as molecular sieves, absorptive filtering layers, and heterogeneous catalysts. In addition, oxide- or carbon-based sensing materials with complex structures or catalytic composites can be derived by the appropriate post-treatment of MOFs. This review discusses the effective techniques to design optimal MOFs, in terms of computational screening and synthesis methods. Moreover, the mechanisms through which the distinctive functionalities of MOFs as sensing materials, heterostructures, and derivatives can be incorporated in gas-sensor applications are presented.

5.
Food Chem Toxicol ; 168: 113310, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35931246

RESUMO

Environmental pollution is one of the important concerns for human health. There are different types of pollutants and techniques to eliminate them from the environment. We hereby report an efficient method for the remediation of environmental contaminants through the catalytic reduction of the selected pollutants. A green method has been developed for the immobilization of copper nanoparticles on magnetic lignosulfonate (Cu NPs@Fe3O4-LS) using the aqueous extract of Filago arvensis L. as a non-toxic reducing and stabilizing agent. The characterization of the prepared Cu NPs@Fe3O4-LS was achieved by vibrating sample magnetometer (VSM), Fourier-transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), high resolution TEM (HRTEM), X-ray diffraction (XRD), scanning TEM (STEM), thermogravimetry-differential thermal analysis (TG/DTA), fast Fourier transform (FFT), energy-dispersive X-ray spectroscopy (EDS), and X-ray photoelectron (XPS) analyses. The synthesized Cu NPs@Fe3O4-LS was applied as a magnetic and green catalyst in the reduction of congo red (CR), 4-nitrophenol (4-NP), and methylene blue (MB). The progress of the reduction reactions was monitored by UV-Vis spectroscopy. Finally, the biological properties of Cu NPs@Fe3O4-LS were investigated. The prepared catalyst demonstrated excellent catalytic efficiency in the reduction of CR, 4-NP, and MB in the presence of sodium borohydride (NaBH4) as the reducing agent. The appropriate magnetism of Cu NPs@Fe3O4-LS made its recovery very simple. The advantages of this process include a simple reaction set-up, high and catalytic antibacterial/antioxidant activities, short reaction time, environmentally friendliness, high stability, and easy separation of the catalyst. In addition, the prepared Cu NPs@Fe3O4-LS could be reused for four cycles with no significant decline in performance.


Assuntos
Vermelho Congo , Poluentes Ambientais , Antibacterianos/química , Antioxidantes/farmacologia , Catálise , Cobre/química , Excipientes , Humanos , Lignina/análogos & derivados , Azul de Metileno/química , Substâncias Redutoras , Espectroscopia de Infravermelho com Transformada de Fourier
6.
Small ; 18(12): e2106613, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35060312

RESUMO

In the pandemic era, the development of high-performance indoor air quality monitoring sensors has become more critical than ever. NO2 is one of the most toxic gases in daily life, which induces severe respiratory diseases. Thus, the real-time monitoring of low concentrations of NO2 is highly required. Herein, a visible light-driven ultrasensitive and selective chemoresistive NO2 sensor is presented based on sulfur-doped SnO2 nanoparticles. Sulfur-doped SnO2 nanoparticles are synthesized by incorporating l-cysteine as a sulfur doping agent, which also increases the surface area. The cationic and anionic doping of sulfur induces the formation of intermediate states in the band gap, highly contributing to the substantial enhancement of gas sensing performance under visible light illumination. Extraordinary gas sensing performances such as the gas response of 418 to 5 ppm of NO2 and a detection limit of 0.9 ppt are achieved under blue light illumination. Even under red light illumination, sulfur-doped SnO2 nanoparticles exhibit stable gas sensing. The endurance to humidity and long-term stability of the sensor are outstanding, which amplify the capability as an indoor air quality monitoring sensor. Overall, this study suggests an innovative strategy for developing the next generation of electronic noses.


Assuntos
Cisteína , Nanopartículas , Luz , Dióxido de Nitrogênio , Enxofre , Compostos de Estanho
7.
Talanta ; 232: 122379, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34074387

RESUMO

In this paper, Fe3O4@ppy-Pt core-shell nanoparticles (NPs) could be produced and utilized for the development of a novel electrochemical sensor to detect 6-mercaptopurine (6-MP). 6-MP determination was examined by cyclic voltammetry (CV), chronoamperometry (CHA), linear sweep voltammetry (LSV), and differential pulse voltammetry (DPV) at Fe3O4@ppy-Pt core-shell NPs modified screen printed electrode (Fe3O4@ppy-Pt/SPE) in phosphate buffered solution (PBS). The outcomes obtained from DPV demonstrated that the Fe3O4@ppy-Pt/SPE proved a linear concentration range among 0.04 and 330.0 µM having a detection limit of 10.0 nM for 6-MP. Also, modified electrode was satisfactorily utilized to detect 6-MP in the presence of 6-thioguanine (6-TG). This sensor showed two separate oxidative peaks at 530 mV for 6-MP and at 730 mV for 6-TG with a peak potential separation of 200 mV which was large enough for simultaneous detection of the two anticancer drugs. In addition, the proposed sensor presented long-term stability, good repeatability, and excellent reproducibility. Finally, the modified electrode demonstrated satisfactory outcomes while used in real samples, proposing the appropriate potential of Fe3O4@ppy-Pt/SPE in the case of clinical diagnosis, biological samples and pharmaceutical compounds analysis.


Assuntos
Nanopartículas , Polímeros , Técnicas Eletroquímicas , Eletrodos , Mercaptopurina , Platina , Pirróis , Reprodutibilidade dos Testes , Tioguanina
8.
Polymers (Basel) ; 13(9)2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33922136

RESUMO

Face masks will be used to prevent pandemic recurrence and outbreaks of mutant SARS-CoV-2 strains until mass immunity is confirmed. The polypropylene (PP) filter is a representative disposable mask material that traps virus-containing bioaerosols, preventing secondary transmission. In this study, a copper thin film (20 nm) was deposited via vacuum coating on a spunbond PP filter surrounding a KF94 face mask to provide additional protection and lower the risk of secondary transmission. Film adhesion was improved using oxygen ion beam pretreatment, resulting in cuprous oxide formation on the PP fiber without structural deformation. The copper-coated mask exhibited filtration efficiencies of 95.1 ± 1.32% and 91.6 ± 0.83% for NaCl and paraffin oil particles, respectively. SARS-CoV-2 inactivation was evaluated by transferring virus-containing media onto the copper-coated PP filters and subsequently adding Vero cells. Infection was verified using real-time polymerase chain reaction and immunochemical staining. Vero cells added after contact with the copper-coated mask did not express the RNA-dependent RNA polymerase and envelope genes of SARS-CoV-2. The SARS-CoV-2 nucleocapsid immunofluorescence results indicated a reduction in the amount of virus of more than 75%. Therefore, copper-coated antiviral PP filters could be key materials in personal protective equipment, as well as in air-conditioning systems.

9.
J Phys Condens Matter ; 33(30)2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-33794513

RESUMO

Gas sensor technology is widely utilized in various areas ranging from home security, environment and air pollution, to industrial production. It also hold great promise in non-invasive exhaled breath detection and an essential device in future internet of things. The past decade has witnessed giant advance in both fundamental research and industrial development of gas sensors, yet current efforts are being explored to achieve better selectivity, higher sensitivity and lower power consumption. The sensing layer in gas sensors have attracted dominant attention in the past research. In addition to the conventional metal oxide semiconductors, emerging nanocomposites and graphene-like two-dimensional materials also have drawn considerable research interest. This inspires us to organize this comprehensive 2020 gas sensing materials roadmap to discuss the current status, state-of-the-art progress, and present and future challenges in various materials that is potentially useful for gas sensors.

10.
RSC Adv ; 11(10): 5411-5425, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35423079

RESUMO

This review article aims to provide an overview of the recent advances in the voltammetric and amperometric sensing of cysteine (Cys). The introduction summarizes the important role of Cys as an essential amino acid, techniques for its sensing, and the utilization of electrochemical methods and chemically modified electrodes for its determination. The main section covers voltammetric and amperometric sensing of Cys based on glassy carbon electrodes, screen printed electrodes, and carbon paste electrodes, modified with various electrocatalytic materials. The conclusion section discusses the current challenges of Cys determination and the future perspectives.

11.
Nanomaterials (Basel) ; 10(11)2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33238536

RESUMO

Decorating photocatalysts with noble metal nanoparticles (e.g., Pt) often increases the catalysts' photocatalytic activity and biomedical properties. Here, a simple and inexpensive method has been developed to prepare a Pt-Ag3PO4/CdS/chitosan composite, which was characterized and used for the visible light-induced photocatalytic and antibacterial studies. This synthesized composite showed superior photocatalytic activity for methylene blue degradation as a hazardous pollutant (the maximum dye degradation was observed in 90 min of treatment) and killing of Gram positive bacterial (Staphylococcus aureus and Bacillus cereus) as well as Gram negative bacteria (Klebsiella pneumoniae, Salmonella typhimurium, Escherichia coli, and Pseudomonas aeruginosa) under visible light irradiation. The antibacterial activity of CdS, CdS/Ag3PO4, and Pt-Ag3PO4/CdS/chitosan against E. coli, Pseudomonas aeruginosa, Salmonella typhimurium, Klebsiella pneumoniae, Staphylococcus aureus, and Bacillus cereus showed the zone of inhibition (mm) under visible light and under dark conditions at a concentration of 20 µg mL-1. Furthermore, the cell viability of the CdS/chitosan, Ag3PO4, Ag3PO4/CdS/chitosan, and Pt-Ag3PO4/CdS/chitosan were investigated on the human embryonic kidney 293 cells (HEK-293), Henrietta Lacks (HeLa), human liver cancer cell line (HepG2), and pheochromocytoma (PC12) cell lines. In addition, the results indicated that the photodegradation rate for Pt-Ag3PO4/CdS/chitosan is 3.53 times higher than that of CdS and 1.73 times higher than that of the CdS/Ag3PO4 composite. Moreover, Pt-Ag3PO4/CdS/chitosan with an optimal amount of CdS killed large areas of different bacteria and different cells separately in a shorter time period under visible-light irradiation, which shows significantly higher efficiency than pure CdS and other CdS/Ag3PO4 composites. The superb performances of this composite are attributed to its privileged properties, such as retarded recombination of photoinduced electron/hole pairs and a large specific surface area, making Pt-Ag3PO4/CdS/chitosan a valuable composite that can be deployed for a range of important applications, such as visible light-induced photocatalysis and antibacterial activity.

12.
Sensors (Basel) ; 20(12)2020 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-32545829

RESUMO

In recent years, several studies have focused on environmental pollutants. Bisphenol A (BPA) is one prominent industrial raw material, and its extensive utilization and release into the environment constitute an environmental hazard. BPA is considered as to be an endocrine disruptor which mimics hormones, and has a direct relationship to the development and growth of animal and human reproductive systems. Moreover, intensive exposure to the compound is related to prostate and breast cancer, infertility, obesity, and diabetes. Hence, accurate and reliable determination techniques are crucial for preventing human exposure to BPA. Experts in the field have published general electrochemical procedures for detecting BPA. The present timely review critically evaluates diverse chemically modified electrodes using various substances that have been reported in numerous studies in the recent decade for use in electrochemical sensors and biosensors to detect BPA. Additionally, the essential contributions of these substances for the design of electrochemical sensors are presented. It has been predicted that chemically modified electrode-based sensing systems will be possible options for the monitoring of detrimental pollutants.


Assuntos
Compostos Benzidrílicos/análise , Técnicas Biossensoriais , Técnicas Eletroquímicas , Poluentes Ambientais/análise , Fenóis/análise , Eletrodos
13.
RSC Adv ; 10(26): 15171-15178, 2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-35495481

RESUMO

The present investigation examines a sensitive electrochemical technique to detect desipramine through Fe3O4/CuO nanoparticles (NPs). Fe3O4/CuO NPs were synthesized via a coprecipitation procedure, and the products were characterized via energy disperse spectroscopy, X-ray diffraction, transmission electron microscopy, scanning electron microscopy, and vibrating sample magnetometer. The voltage-current curve and differential pulse voltammetry examinations of Fe3O4/CuO-modified screen-printed electrode (Fe3O4/CuO/SPE) were followed by the determination of electro-catalytic activities toward desipramine oxidation in a phosphate buffer solution (pH = 7.0). In addition, the value of diffusion coefficient (D = 3.0 × 10-6 cm2 s-1) for desipramine was calculated. Then, based on the optimum conditions, it was observed that the currents of the oxidation peak were linearly proportionate to the concentration of desipramine in the broad range between 0.08 and 400.0 µM and LOD of 0.03 µM (S/N = 3). Finally, our new sensor was successfully utilized to detect desipramine in the real samples, with reasonable recovery in the range of 97.2% to 102.7%.

14.
Sci Rep ; 9(1): 13573, 2019 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-31537878

RESUMO

Aluminum-ion batteries (AIBs) are regarded as promising candidates for post-lithium-ion batteries due to their lack of flammability and electrochemical performance comparable to other metal-ion batteries. The lack of suitable cathode materials, however, has hindered the development of high-performing AIBs. Sulfur is a cost-efficient material, having distinguished electrochemical properties, and is considered an attractive cathode material for AIBs. Several pioneering reports have shown that aluminum-sulfur batteries (ASBs) exhibit superior electrochemical capacity over other cathode materials for AIBs. However, a rapid decay in the capacity is a huge barrier for their practical applications. Here, we have demonstrated systematically for the first time that the two-dimensional layered materials (e.g. MoS2, WS2, and BN) can serve as fixers of S and sulfide compounds during repeated charge/discharge processes; BN/S/C displays the highest capacity of 532 mAh g-1 (at a current density of 100 mA g-1) compared with the current state-of-the-art cathode material for AIBs. Further, we could improve the life-span of ASBs to an unprecedented 300 cycles with a high Coulombic efficiency of 94.3%; discharge plateaus at ~1.15 V vs. AlCl4-/Al was clearly observed during repeated charge/discharge cycling. We believe that this work opens up a new method for achieving high-performing ASBs.

15.
Sci Rep ; 9(1): 13665, 2019 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-31541195

RESUMO

Aluminum-ion batteries (AIBs) are attracting increasing attention as a potential energy storage system owing to the abundance of Al sources and high charge density of Al3+. However, suitable cathode materials to further advance high-performing AIBs are unavailable. Therefore, we demonstrated the compatibility of elemental metal nanoparticles (NPs) as cathode materials for AIBs. Three types of metal NPs (Co@C, Fe@C, CoFe@C) were formed by in-situ growing Prussian blue analogs (PBAs, Co[Co(CN)6], Fe[Fe(CN)6] and Co[Fe(CN)6]) on a natural loofa (L) by a room-temperature wet chemical method in aqueous bath, followed by a carbonization process. The employed L effectively formed graphite C-encapsulated metal NPs after heat treatment. The discharge capacity of CoFe@C was superior (372 mAh g-1) than others (103 mAh g-1 for Co@C and 75 mAh g-1 for Fe@C). The novel design results in CoFe@C with an outstanding long-term charge/discharge cycling performance (over 1,000 cycles) with a Coulombic efficiency of 94.1%. Ex-situ X-ray diffraction study indicates these metal NP capacities are achieved through a solid-state diffusion-limited Al storage process. This novel design for cathode materials is highly significant for the further development of advanced AIBs in the future.

16.
Small ; 15(40): e1902065, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31379070

RESUMO

The development of high performance gas sensors that operate at room temperature has attracted considerable attention. Unfortunately, the conventional mechanism of chemiresistive sensors is restricted at room temperature by insufficient reaction energy with target molecules. Herein, novel strategy for room temperature gas sensors is reported using an ionic-activated sensing mechanism. The investigation reveals that a hydroxide layer is developed by the applied voltages on the SnO2 surface in the presence of humidity, leading to increased electrical conductivity. Surprisingly, the experimental results indicate ideal sensing behavior at room temperature for NO2 detection with sub-parts-per-trillion (132.3 ppt) detection and fast recovery (25.7 s) to 5 ppm NO2 under humid conditions. The ionic-activated sensing mechanism is proposed as a cascade process involving the formation of ionic conduction, reaction with a target gas, and demonstrates the novelty of the approach. It is believed that the results presented will open new pathways as a promising method for room temperature gas sensors.

17.
ACS Sens ; 4(9): 2395-2402, 2019 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-31339038

RESUMO

Transition metal dichalcogenides (TMDs) have attracted enormous attention in diverse research fields. Especially, gas sensors are considered in a promising application exploiting TMDs. However, the studies are confined to only major TMDs such as MoS2 and WS2. Particularly, the chemoresistive sensing properties of two-dimensional (2D) NbS2 have never been explored. For the first time, we report room temperature NO2 sensing characteristics of 2D NbS2 nanosheets and the sensing mechanisms using first-principles calculations based on density functional theory. The results demonstrate that the NbS2 edges possessing different configurations depending on synthetic conditions differ in the sensing ability of the TMD nanosheets. This study not only broadens the potential of 2D NbS2 for gas sensing applications, but also presents the important role of edge configuration of TMDs depending on synthetic conditions for further studies.


Assuntos
Técnicas de Química Analítica/instrumentação , Nióbio/química , Dióxido de Nitrogênio/análise , Temperatura , Modelos Moleculares , Conformação Molecular , Nanoestruturas/química , Óxidos
18.
Nanoscale ; 11(6): 2966-2973, 2019 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-30693930

RESUMO

Graphene is one of the most promising materials for high-performance gas sensors due to its unique properties such as high sensitivity at room temperature, transparency, and flexibility. However, the low selectivity and irreversible behavior of graphene-based gas sensors are major problems. Here, we present unprecedented room temperature hydrogen detection by Au nanoclusters supported on self-activated graphene. Compared to pristine graphene sensors, the Au-decorated graphene sensors exhibit highly improved gas-sensing properties upon exposure to various gases. In particular, an unexpected substantial enhancement in H2 detection is found, which has never been reported for Au decoration on any type of chemoresistive material. Density functional theory calculations reveal that Au nanoclusters on graphene contribute to the adsorption of H atoms, whereas the surfaces of Au and graphene do not bind with H atoms individually. The discovery of such a new functionality in the existing material platform holds the key to diverse research areas based on metal nanocluster/graphene heterostructures.

19.
ACS Appl Mater Interfaces ; 11(7): 7529-7538, 2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30672291

RESUMO

Morphological evolution accompanying a surface roughening and preferred orientation is an effective way to realize a high-performance gas sensor because of its significant potential as a chemical catalyst through chemical potentials and atomic energy states. In this work, we investigated a heterojunction of double-side-W-decorated NiO nanoigloos fabricated through radio frequency sputtering and a soft-template method. Interestingly, a morphological evolution characterized by a pyramidal rough surface and the preferred orientation of the (111) plane was observed upon decorating the bare NiO nanoigloos with W. The underlying mechanism of the morphological evolution was precisely demonstrated based on the van der Drift competitive growth model originating from the oxygen transport and chemical strain in the lattice. The gas sensing properties of W-decorated NiO show an excellent NO2 response and selectivity when compared to other gases. In addition, high response stability was evaluated under interference gas and humidity conditions. The synergistic effects on the sensing performance were interpreted on the basis of the morphological evolution of W-decorated NiO nanoigloos.

20.
Sci Rep ; 9(1): 21, 2019 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-30631121

RESUMO

Blending organic semiconductors with insulating polymers has been known to be an effective way to overcome the disadvantages of single-component organic semiconductors for high-performance organic field-effect transistors (OFETs). We show that when a solution processable organic semiconductor (6,13-bis(triisopropylsilylethynyl)pentacene, TIPS-pentacene) is blended with an insulating polymer (PS), morphological and structural characteristics of the blend films could be significantly influenced by the processing conditions like the spin coating time. Although vertical phase-separated structures (TIPS-pentacene-top/PS-bottom) were formed on the substrate regardless of the spin coating time, the spin time governed the growth mode of the TIPS-pentacene molecules that phase-separated and crystallized on the insulating polymer. Excess residual solvent in samples spun for a short duration induces a convective flow in the drying droplet, thereby leading to one-dimensional (1D) growth mode of TIPS-pentacene crystals. In contrast, after an appropriate spin-coating time, an optimum amount of the residual solvent in the film led to two-dimensional (2D) growth mode of TIPS-pentacene crystals. The 2D spherulites of TIPS-pentacene are extremely advantageous for improving the field-effect mobility of FETs compared to needle-like 1D structures, because of the high surface coverage of crystals with a unique continuous film structure. In addition, the porous structure observed in the 2D crystalline film allows gas molecules to easily penetrate into the channel region, thereby improving the gas sensing properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA