Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int Immunopharmacol ; 130: 111706, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38382265

RESUMO

BACKGROUND: YH35324, a long-acting IgETrap-Fc fusion protein, is a novel therapeutic agent for immunoglobulin E (IgE)-mediated allergic diseases. This randomized, double-blind, placebo/active-controlled, single ascending dose Phase 1 study assessed the safety, tolerability, pharmacokinetics (PK), and pharmacodynamics (PD) of YH35324 in subjects with atopy. METHODS: Eligible subjects were healthy subjects or atopic adults with mild allergic rhinitis, atopic dermatitis, food allergy, or urticaria, and a serum total IgE level of 30-700 IU/mL (Part A) or > 700 IU/mL (Part B). In Part A, 35 subjects in 5 cohorts received YH35324 (0.3, 1, 3, 6, and 9 mg/kg), 8 received omalizumab (300 mg), and 9 received placebo. In Part B, 8 subjects received YH35324 and 8 received omalizumab. RESULTS: Twenty subjects (38.5 %) in Part A (YH35324: 37.1 %, omalizumab: 50.0 %, placebo: 33.3 %) and 10 subjects (62.5 %) in Part B (YH35324: 100 %; omalizumab: 25.0 %) experienced treatment-emergent adverse events (TEAEs). TEAEs were mostly grade 1/2; no serious AEs, AE-related treatment discontinuation, or anaphylaxis were reported. YH35324 exhibited dose-proportional increase in Cmax and AUClast over the dose range of 0.3-9 mg/kg. YH35324 rapidly suppressed serum-free IgE levels to a significant extent (< 25 and < 82.8 ng/mL, both P < 0.05) and with longer duration than omalizumab. CONCLUSION: This study showed that YH35324 has a favorable safety profile and is effective in reducing serum-free IgE levels in subjects with atopic conditions.


Assuntos
Anafilaxia , Dermatite Atópica , Adulto , Humanos , Omalizumab/efeitos adversos , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados , Anafilaxia/induzido quimicamente , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/induzido quimicamente , Imunoglobulina E , Método Duplo-Cego , Ligante de CD40
2.
Adv Mater ; 32(22): e2000020, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32319126

RESUMO

The formation of an immunological synapse (IS) on recognition of a cancer cell is the main mechanism underlying the natural killer (NK)-cell-mediated killing of tumor cells. Herein, an integrative strategy for cancer therapy against solid tumors is reported, in which alterations in the cleft of IS, following the secretion of acidic granular content, are utilized as a trigger for the delivery of chemotherapeutic drugs. NK cells are decorated with the IS-environment-responsive micellar system to ensure the release of the payload when they attack cancer cells. Using this strategy, the immunological cytotoxic killing effect of NK cells against solid tumors is reinforced with the site-specific diffusion of chemotherapeutic agents. Harnessing the intrinsic mechanism for the recognition of abnormal cells and the tumor-homing effect of NK cells limit the adverse systemic effects of chemotherapeutic drugs. This approach may provide a pragmatic platform for the universal and effective utilization of IS formation.


Assuntos
Sinapses Imunológicas/imunologia , Células Matadoras Naturais/imunologia , Neoplasias/terapia , Antineoplásicos/imunologia , Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/imunologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Comunicação Celular/imunologia , Citotoxicidade Imunológica , Doxorrubicina , Portadores de Fármacos , Humanos , Imunoterapia , Neoplasias/imunologia , Neoplasias Experimentais/terapia , Imagem Óptica
3.
Sci Rep ; 8(1): 14174, 2018 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-30242205

RESUMO

Paneth cells are one of the principal epithelial cell types in the small intestine, located at the base of intestinal crypts. Paneth cells play key roles in intestinal host-microbe homeostasis via granule secretion, and their dysfunction is implicated in pathogenesis of several diseases including Crohn's disease. Despite their physiological importance, study of Paneth cells has been hampered by the limited accessibility and lack of labeling methods. In this study, we developed a simple in vivo imaging method of Paneth cells in the intact mouse small intestine by using moxifloxacin and two-photon microscopy (TPM). Moxifloxacin, an FDA-approved antibiotic, was used for labeling cells and its fluorescence was strongly observed in Paneth cell granules by TPM. Moxifloxacin labeling of Paneth cell granules was confirmed by molecular counterstaining. Comparison of Paneth cells in wild type, genetically obese (ob/ob), and germ-free (GF) mice showed different granule distribution. Furthermore, Paneth cell degranulation was observed in vivo. Our study suggests that TPM with moxifloxacin labeling can serve as a useful tool for studying Paneth cell biology and related diseases.


Assuntos
Intestino Delgado/patologia , Celulas de Paneth/patologia , Animais , Doença de Crohn/metabolismo , Doença de Crohn/patologia , Grânulos Citoplasmáticos/metabolismo , Modelos Animais de Doenças , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Intestino Delgado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Microscopia/métodos , Moxifloxacina/metabolismo , Celulas de Paneth/metabolismo , Fótons
4.
J Invest Dermatol ; 137(11): 2354-2361, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28684329

RESUMO

House dust mites have been implicated in the etiology and exacerbation of atopic dermatitis. Diverse factors contribute to house dust mite allergenicity through the activation of innate immunity. We investigated whether Dermatophagoides farinae extract (DFE) allergens mediate innate immune activation through specific toll-like receptors (TLRs) in epidermal keratinocytes, a DFE-induced murine atopic dermatitis model, and human atopic dermatitis lesions. DFE activated the expression of TLR1, TLR6, IL-25, and IL-33 in human primary keratinocytes and HaCaT cells. Knockdown of TLR6 inhibited DFE-induced upregulation of IL-25 or IL-33. In addition, the suppression of TLR1 inhibited the release of IL-33. DFE induced the expression of IL-25 and IL-33 by upregulation of IL-1 receptor-associated kinase 1, transforming growth factor-ß activated kinase-1, IκB kinase, and NF-κB pathways. Tlr6-/- mice did not show DFE-induced upregulation of IL-25 and IL-33. Furthermore, DFE-induced upregulation of IL-25 was not induced in Tlr1-/- mice. We also identified upregulated mRNA and protein expression of TLR1, TLR6, IL-25, and IL-33 in human atopic dermatitis skin lesions with high house dust mite sensitization. We found that DFE-induced activation of TLR1 and TLR6 may cause polarization toward a T helper type 2 immune response via the release of IL-25 and IL-33.


Assuntos
Dermatite Atópica/imunologia , Regulação da Expressão Gênica , Imunidade Inata/genética , Pyroglyphidae/imunologia , Receptor 1 Toll-Like/genética , Animais , Biópsia por Agulha , Células Cultivadas , Dermatite Atópica/genética , Dermatite Atópica/patologia , Modelos Animais de Doenças , Humanos , Imunidade Inata/fisiologia , Imuno-Histoquímica , Interleucina-33/imunologia , Interleucina-33/metabolismo , Interleucinas/genética , Queratinócitos/citologia , Queratinócitos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Distribuição Aleatória , Transdução de Sinais , Células Th2/citologia , Células Th2/imunologia , Receptor 6 Toll-Like/genética
5.
Sci Rep ; 7(1): 1573, 2017 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-28484281

RESUMO

Ulcerative colitis is a multi-factorial disease involving a dysregulated immune response. Disruptions to the intestinal epithelial barrier and translocation of bacteria, resulting in inflammation, are common in colitis. The mechanisms underlying epithelial barrier dysfunction or regulation of tight junction proteins during disease progression of colitis have not been clearly elucidated. Increase in phospholipase D (PLD) activity is associated with disease severity in colitis animal models. However, the role of PLD2 in the maintenance of intestinal barrier integrity remains elusive. We have generated intestinal-specific Pld2 knockout mice (Pld2 IEC-KO) to investigate the mechanism of intestinal epithelial PLD2 in colitis. We show that the knockout of Pld2 confers protection against dextran sodium sulphate (DSS)-induced colitis in mice. Treatment with DSS induced the expression of PLD2 and downregulated occludin in colon epithelial cells. PLD2 was shown to mediate phosphorylation of occludin and induce its proteasomal degradation in a c-Src kinase-dependent pathway. Additionally, we have shown that treatment with an inhibitor of PLD2 can rescue mice from DSS-induced colitis. To our knowledge, this is the first report showing that PLD2 is pivotal in the regulation of the integrity of epithelial tight junctions and occludin turn over, thereby implicating it in the pathogenesis of colitis.


Assuntos
Colite/metabolismo , Colite/patologia , Células Epiteliais/metabolismo , Deleção de Genes , Intestinos/patologia , Ocludina/metabolismo , Fosfolipase D/genética , Animais , Colite/induzido quimicamente , Sulfato de Dextrana , Dinitrofluorbenzeno/análogos & derivados , Regulação para Baixo , Células HT29 , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Biológicos , Especificidade de Órgãos , Fosfolipase D/antagonistas & inibidores , Fosfolipase D/metabolismo , Fosforilação , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Quinases da Família src/metabolismo
6.
J Exp Med ; 213(4): 555-67, 2016 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-26951334

RESUMO

Eosinophils play proinflammatory roles in helminth infections and allergic diseases. Under steady-state conditions, eosinophils are abundantly found in the small intestinal lamina propria, but their physiological function is largely unexplored. In this study, we found that small intestinal eosinophils down-regulate Th17 cells. Th17 cells in the small intestine were markedly increased in the ΔdblGATA-1 mice lacking eosinophils, and an inverse correlation was observed between the number of eosinophils and that of Th17 cells in the small intestine of wild-type mice. In addition, small intestinal eosinophils suppressed the in vitro differentiation of Th17 cells, as well as IL-17 production by small intestinal CD4(+)T cells. Unlike other small intestinal immune cells or circulating eosinophils, we found that small intestinal eosinophils have a unique ability to constitutively secrete high levels of IL-1 receptor antagonist (IL-1Ra), a natural inhibitor of IL-1ß. Moreover, small intestinal eosinophils isolated from IL-1Ra-deficient mice failed to suppress Th17 cells. Collectively, our results demonstrate that small intestinal eosinophils play a pivotal role in the maintenance of intestinal homeostasis by regulating Th17 cells via production of IL-1Ra.


Assuntos
Cistinil Aminopeptidase/imunologia , Eosinófilos/imunologia , Intestino Delgado/imunologia , Células Th17/imunologia , Animais , Cistinil Aminopeptidase/genética , Eosinófilos/citologia , Interleucina-17/genética , Interleucina-17/imunologia , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Intestino Delgado/citologia , Camundongos , Camundongos Transgênicos , Células Th17/citologia
7.
Sci Rep ; 5: 16801, 2015 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-26582486

RESUMO

Numerous regulatory T cells (Tregs) are present in adipose tissues compared with other lymphoid or non-lymphoid tissues. Adipose Tregs regulate inflammatory state and insulin sensitivity. However, the mechanism that maintains Tregs in adipose tissue remains unclear. Here, we revealed the contribution of adipose tissue macrophages (ATMs) to the induction and proliferation of adipose Tregs. ATMs isolated from mice under steady state conditions induced Tregs with high expression of PPARγ compared with splenic dendritic cells in vitro. Furthermore, ATMs from obese mice prompted the differentiation of PPARγ low Tregs. Adoptive transfer of ATMs induced differentiation and proliferation of Tregs, whereas depletion of ATMs by clodronate-liposome resulted in reduction of adipose Tregs, in vivo. Deficiency of anti-inflammatory adipocytokine, Adipoq, resulted in small proportions of ATMs and adipose Tregs without alteration of other immune cells in vivo. Therefore, these data suggest that the abundance of Tregs in adipose tissue could be partly attributed to the ability of ATMs to induce PPARγ-expressing Tregs.


Assuntos
Tecido Adiposo/citologia , Fatores de Transcrição Forkhead/metabolismo , Macrófagos/metabolismo , PPAR gama/metabolismo , Adiponectina/deficiência , Adiponectina/metabolismo , Animais , Células Apresentadoras de Antígenos/efeitos dos fármacos , Células Apresentadoras de Antígenos/metabolismo , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ácido Clodrônico/farmacologia , Dieta Hiperlipídica , Macrófagos/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Fenótipo , Linfócitos T Reguladores/metabolismo
8.
Obesity (Silver Spring) ; 23(11): 2199-206, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26260403

RESUMO

OBJECTIVE: Recent studies have revealed a link between Toll-like receptor (TLR) signaling and the adipose tissue inflammation associated with obesity. Although TLR9 is known to play an important role in inflammation and innate immunity, its role in mediating adipose tissue inflammation has not yet been investigated. Thus, the objective of this study was to determine the role of TLR9 in regulating immune cells in visceral adipose tissue and maintaining the metabolic homeostasis. METHODS: Wild-type and TLR9-deficient mice were fed with a high-fat diet, and the body weight gain, glucose tolerance, insulin sensitivity, and adipose tissue inflammation were examined. RESULTS: TLR9-deficient mice gained significantly more weight and body fat under a high-fat diet than wild-type mice and exhibited more severe glucose intolerance and insulin resistance. We also found a dramatic increase of M1 macrophages as well as TH 1 cells in the adipose tissue of TLR9-deficient mice compared to wild-type mice. Furthermore, the levels of various proinflammatory cytokines and chemokines were higher in TLR9-deficient mice. CONCLUSIONS: TLR9 signaling is involved in regulating adipose tissue inflammation and controlling obesity and the metabolic syndrome.


Assuntos
Intolerância à Glucose/genética , Resistência à Insulina/genética , Síndrome Metabólica/genética , Obesidade/genética , Paniculite/genética , Receptor Toll-Like 9/fisiologia , Animais , Células Cultivadas , Citocinas/metabolismo , Dieta Hiperlipídica , Intolerância à Glucose/imunologia , Intolerância à Glucose/metabolismo , Inflamação/genética , Inflamação/metabolismo , Gordura Intra-Abdominal/metabolismo , Gordura Intra-Abdominal/patologia , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Paniculite/patologia , Receptor Toll-Like 9/genética , Aumento de Peso
9.
Gut ; 64(2): 260-71, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24902766

RESUMO

OBJECTIVE: Programmed death-ligand 1 (PD-L1) has been shown to negatively regulate immune responses via its interaction with PD-1 receptor. In this study, we investigated the effects of PD-L1-Fc treatment on intestinal inflammation using two murine models of inflammatory colitis induced by dextran sulfate sodium (DSS) and T-cell transfer. DESIGN: The anti-colitis effect of adenovirus expressing Fc-conjugated PD-L1 (Ad/PD-L1-Fc) and recombinant PD-L1-Fc protein was evaluated in DSS-treated wild-type and Rag-1 knockout (KO) mice. We examined differentiation of T-helper cells, frequency of innate immune cells, and cytokine production by dendritic cells (DCs) in the colon from DSS-treated mice after PD-L1-Fc administration. In Rag-1 KO mice reconstituted with CD4 CD45RB(high) T cells, we assessed the treatment effect of PD-L1-Fc protein on the development of colitis. RESULTS: Administration of Ad/PD-L1-Fc significantly ameliorated DSS-induced colitis, which was accompanied by diminished frequency of interleukin (IL)-17A-producing CD4 T cells and increased interferon-γ-producing CD4 T cells in the colon of DSS-fed mice. The anti-colitic effect of PD-L1-Fc treatment was also observed in DSS-treated Rag-1 KO mice, indicating lymphoid cell independency. PD-L1-Fc modulated cytokine production by colonic DCs and the effect was dependent on PD-1 expression. Furthermore, PD-L1-Fc protein could significantly reduce the severity of colitis in CD4 CD45RB(high) T-cell-transferred Rag-1 KO mice. CONCLUSIONS: Based on the protective effect of PD-L1-Fc against DSS-induced and T-cell-induced colitis, our results suggest that PD-1-mediated inhibitory signals have a crucial role in limiting the development of colonic inflammation. This implicates that PD-L1-Fc may provide a novel therapeutic approach to treat inflammatory bowel disease.


Assuntos
Antígeno B7-H1/uso terapêutico , Colite Ulcerativa/prevenção & controle , Fatores Imunológicos/uso terapêutico , Doença Aguda , Adenoviridae/genética , Animais , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Antígeno B7-H1/farmacologia , Diferenciação Celular/efeitos dos fármacos , Colite Ulcerativa/etiologia , Colite Ulcerativa/imunologia , Colite Ulcerativa/patologia , Colo/imunologia , Citocinas/biossíntese , Células Dendríticas/imunologia , Sulfato de Dextrana , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos/métodos , Vetores Genéticos , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Imunidade Inata , Imunidade nas Mucosas , Fragmentos Fc das Imunoglobulinas/genética , Fragmentos Fc das Imunoglobulinas/metabolismo , Fragmentos Fc das Imunoglobulinas/farmacologia , Fragmentos Fc das Imunoglobulinas/uso terapêutico , Fatores Imunológicos/genética , Fatores Imunológicos/metabolismo , Fatores Imunológicos/farmacologia , Mucosa Intestinal/imunologia , Transfusão de Linfócitos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Recombinantes de Fusão/farmacologia , Proteínas Recombinantes de Fusão/uso terapêutico , Linfócitos T Auxiliares-Indutores/imunologia , Células Th17/imunologia
10.
Diabetologia ; 57(7): 1456-65, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24744121

RESUMO

AIMS/HYPOTHESIS: Obesity-induced inflammation is initiated by the recruitment of macrophages into adipose tissue. The recruited macrophages, called adipose tissue macrophages, secrete several proinflammatory cytokines that cause low-grade systemic inflammation and insulin resistance. The aim of this study was to find macrophage-recruiting factors that are thought to provide a crucial connection between obesity and insulin resistance. METHODS: We used chemotaxis assay, reverse phase HPLC and tandem MS analysis to find chemotactic factors from adipocytes. The expression of chemokines and macrophage markers was evaluated by quantitative RT-PCR, immunohistochemistry and FACS analysis. RESULTS: We report our finding that the chemokine (C-X-C motif) ligand 12 (CXCL12, also known as stromal cell-derived factor 1), identified from 3T3-L1 adipocyte conditioned medium, induces monocyte migration via its receptor chemokine (C-X-C motif) receptor 4 (CXCR4). Diet-induced obese mice demonstrated a robust increase of CXCL12 expression in white adipose tissue (WAT). Treatment of obese mice with a CXCR4 antagonist reduced macrophage accumulation and production of proinflammatory cytokines in WAT, and improved systemic insulin sensitivity. CONCLUSIONS/INTERPRETATION: In this study we found that CXCL12 is an adipocyte-derived chemotactic factor that recruits macrophages, and that it is a required factor for the establishment of obesity-induced adipose tissue inflammation and systemic insulin resistance.


Assuntos
Tecido Adiposo/metabolismo , Quimiocina CXCL12/metabolismo , Resistência à Insulina/fisiologia , Macrófagos/metabolismo , Células 3T3-L1 , Adipócitos/metabolismo , Animais , Linhagem Celular , Quimiotaxia/fisiologia , Camundongos , Obesidade/metabolismo
11.
J Immunol ; 192(4): 1440-8, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24420920

RESUMO

PAF complex is an evolutionarily conserved transcriptional complex that associates with RNA polymerase II in the coding region of actively transcribing genes. Although its transcriptional activity is closely related to diverse cellular processes, such as cell-cycle progression or development in mammals, its role in immune responses has not been addressed yet. In this study, we show that CTR9, a component of PAF complex, functions as a repressor of Th17 differentiation. Both mRNA and protein levels of CTR9 were significantly decreased during the differentiation processes of naive T into Th17 effector cells. When CTR9 was depleted, IL-17 expression was induced and differentiation into Th17 cells enhanced. In naive T cells, CTR9 occupied the coding region of Il17a, but dissociated under Th17 in vitro-polarizing conditions. In contrast, both CDC73 and PAF1 were recruited to the Il17a locus under Th17-differentiation conditions. In the IL-6-stimulated splenocytes, expression of CTR9 was decreased, and chromatin-bound CTR9 disappeared in the coding region of Il17a. IL-6 also directly repressed expression of CTR9 gene, as promoter activity of CTR9 was similarly repressed by IL-6 treatment. Moreover, in mice with collagen-induced arthritis, lentivirus-mediated CTR9 overexpression in the joints ameliorated arthritis severity, decreasing the frequency of CD4(+)IL-17(+) T cells in lymph nodes. In conclusion, our data propose a novel feed-forward loop of IL-17 transcriptional regulatory circuit, via IL-6-mediated repression of CTR9 which is a transcriptional repressor of IL-17.


Assuntos
Diferenciação Celular/genética , Regulação da Expressão Gênica , Interleucina-17/genética , Interleucina-6/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Células Th17/citologia , Animais , Artrite Experimental/genética , Artrite Experimental/metabolismo , Proteínas de Transporte/metabolismo , Linfonodos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Proteínas Nucleares/genética , Fosfoproteínas/genética , Regiões Promotoras Genéticas , Ligação Proteica , RNA Mensageiro/biossíntese , Fator de Transcrição STAT3/metabolismo , Baço/citologia , Baço/metabolismo , Células Th17/imunologia , Fatores de Transcrição , Proteínas Supressoras de Tumor/metabolismo
12.
Immunity ; 38(6): 1187-97, 2013 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-23791646

RESUMO

The small intestine harbors a substantial number of commensal bacteria and is sporadically invaded by pathogens, but the response to these microorganisms is fundamentally different. We identified a discriminatory sensor by using Toll-like receptor 3 (TLR3). Double-stranded RNA (dsRNA) of one major commensal species, lactic acid bacteria (LAB), triggered interferon-ß (IFN-ß) production, which protected mice from experimental colitis. The LAB-induced IFN-ß response was diminished by dsRNA digestion and treatment with endosomal inhibitors. Pathogenic bacteria contained less dsRNA and induced much less IFN-ß than LAB, and dsRNA was not involved in pathogen-induced IFN-ß induction. These results identify TLR3 as a sensor to small intestinal commensal bacteria and suggest that dsRNA in commensal bacteria contributes to anti-inflammatory and protective immune responses.


Assuntos
Colite/prevenção & controle , Enterococcaceae/imunologia , Infecções por Bactérias Gram-Positivas/imunologia , Interferon beta/metabolismo , Lactobacillus/imunologia , Macrófagos/imunologia , Receptor 3 Toll-Like/metabolismo , Animais , Células Cultivadas , Colite/etiologia , Colite/imunologia , Colite/microbiologia , Modelos Animais de Doenças , Enterococcaceae/patogenicidade , Feminino , Infecções por Bactérias Gram-Positivas/complicações , Infecções por Bactérias Gram-Positivas/microbiologia , Intestinos/imunologia , Intestinos/microbiologia , Macrófagos/microbiologia , Proteínas de Membrana Transportadoras/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Mutantes , RNA de Cadeia Dupla/imunologia
13.
Am J Respir Cell Mol Biol ; 49(4): 637-45, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23713467

RESUMO

Pseudomonas aeruginosa is often involved in lung diseases such as cystic fibrosis. These bacteria can release outer membrane vesicles (OMVs), which are bilayered proteolipids with diameters of approximately 20 to 250 nm. In vitro, these OMVs activate macrophages and airway epithelial cells. The aim of this study was to determine whether OMVs from P. aeruginosa can induce pulmonary inflammation in vivo and to elucidate the mechanisms involved. Bacteria-free OMVs were isolated from P. aeruginosa cultures. Wild-type, Toll-like receptor (TLR)2 and TLR4 knockout mice were exposed to OMVs by the airway, and inflammation in the lung was assessed using differential counts, histology, and quantification of chemokines and cytokines. The involvement of the TLR2 and TLR4 pathways was studied in human cells using transfection. OMVs given to the mouse lung caused dose- and time-dependent pulmonary cellular inflammation. Furthermore, OMVs increased concentrations of several chemokines and cytokines in the mouse lungs and mouse alveolar macrophages. The inflammatory responses to OMVs were comparable to those of live bacteria and were only partly regulated by the TLR2 and TLR4 pathways, according to studies in knockout mice. This study shows that OMVs from P. aeruginosa cause pulmonary inflammation without live bacteria in vivo. This effect is only partly controlled by TLR2 and TLR4. The role of OMVs in clinical disease warrants further studies because targeting of OMVs in addition to live bacteria may add clinical benefit compared with treating with antibiotics alone.


Assuntos
Pneumonia/microbiologia , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/metabolismo , Animais , Linhagem Celular , Quimiocinas/metabolismo , Humanos , Pulmão/metabolismo , Pulmão/microbiologia , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pneumonia/metabolismo , Infecções por Pseudomonas/metabolismo , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , Transfecção
14.
J Immunol ; 190(10): 5287-95, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23585677

RESUMO

TLRs are divided into two groups based on their subcellular localization patterns. TLR1, 2, 4, 5, and 6 are expressed on the cell surface, whereas the nucleotide-sensing TLRs, such as TLR3, 7, 8, and 9 stay mainly inside cells. The polytopic membrane protein UNC93B1 physically interacts with the nucleotide-sensing TLRs and delivers them from the endoplasmic reticulum to endolysosomes, where the TLRs recognize their ligands and initiate signaling. In cells with nonfunctional UNC93B1, the nucleic acid-sensing TLRs fail to exit the endoplasmic reticulum and consequently do not signal. However, the detailed molecular mechanisms that underlie the UNC93B1-mediated TLR trafficking remain to be clarified. All nucleotide-sensing TLRs contain acidic amino acid residues in the juxtamembrane region between the leucine-rich repeat domain and the transmembrane segment. We show that the D812 and E813 residues of TLR9 and the D699 and E704 residues of TLR3 help to determine the interaction of these TLRs with UNC93B1. Mutation of the acidic residues in TLR3 and TLR9 prevents UNC93B1 binding, as well as impairs TLR trafficking and renders the mutant receptors incapable of transmitting signals. Therefore, the acidic residues in the juxtamembrane region of the nucleotide-sensing TLRs have important functional roles.


Assuntos
Aminoácidos Acídicos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Receptor 3 Toll-Like/metabolismo , Receptor Toll-Like 9/metabolismo , Animais , Linhagem Celular , Células Dendríticas , Retículo Endoplasmático/metabolismo , Células HEK293 , Humanos , Lisossomos/metabolismo , Macrófagos , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Ligação Proteica , Transporte Proteico , Transdução de Sinais , Receptor 3 Toll-Like/genética , Receptor Toll-Like 9/química , Receptor Toll-Like 9/genética
15.
J Immunol ; 190(10): 5296-305, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23589614

RESUMO

Small intestinal innate lymphoid cells (ILCs) regulate intestinal epithelial cell homeostasis and help to prevent pathogenic bacterial infections by producing IL-22. In a global gene-expression analysis comparing small intestinal ILCs (Lin(-)c-Kit(+)Sca-1(-) cells) with non-ILCs (Lin(-)c-Kit(-)Sca-1(-) cells), we found that Lin(-)c-Kit(+)Sca-1(-) cells highly expressed the mRNAs for Il22, antimicrobial peptides, Csf2rb2 (Il3r), mast cell proteases, and Rorc. We then subdivided the Lin(-)c-Kit(+)Sca-1(-) cells into three groups--Lin(-)c-Kit(+)NKp46(-)CD4(-), Lin(-)c-Kit(+)NKp46(-)CD4(+) (CD4(+) LTi-like cells), and Lin(-)c-Kit(+)NKp46(+) (NKp46(+) ILC22 cells)--and showed that the Lin(-)c-Kit(+)NKp46(-)CD4(-) cells produced the highest level of IL-22 protein after IL-1ß, IL-23, or IL-1ß and IL-23 stimulation. In addition, we showed that the majority of the Lin(-)c-Kit(+)NKp46(-)CD4(-) population was IL-7Rα(+)CD34(-)ß7(int) cells, and IL-7Rα(-) cells could be divided into three subsets (CD34(+)ß7(int), CD34(-)ß7(int), and CD34(int)ß7(hi) cells). The IL-7Rα(+)CD34(-)ß7(int) cells strongly expressed the transcripts for Il17f and Il22 after costimulation with IL-1ß and IL-23. The IL-7Rα(-)CD34(+)ß7(int) and IL-7Rα(-)CD34(int)ß7(hi) cells predominantly expressed the transcripts for mast cell proteases and differentiated almost entirely into mast cells after 1 wk in culture medium supplemented with a cytokine mixture, whereas the IL-7Rα(-)CD34(-)ß7(int) cells highly expressed α-defensins and showed no differentiation. Taken together, these findings indicate that the IL-7Rα(-)CD34(+)ß7(int) and IL-7Rα(-)CD34(int)ß7(hi) populations are mast cell progenitors, and the IL-7Rα(+)CD34(-)ß7(int) (CD4(-) LTi-like cells) and IL-7Rα(-)CD34(-)ß7(int) populations within Lin(-)c-Kit(+)NKp46(-)CD4(-) cells may control intestinal homeostasis and provide intestinal protection by producing high levels of IL-22 and α-defensins, respectively.


Assuntos
Infecções Bacterianas/imunologia , Interleucina-1beta/metabolismo , Interleucinas/biossíntese , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Linfócitos/metabolismo , Animais , Antígenos CD34 , Antígenos Ly/metabolismo , Infecções Bacterianas/prevenção & controle , Antígenos CD4/metabolismo , Diferenciação Celular , Células Cultivadas , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Feminino , Interleucina-23/metabolismo , Subunidade alfa de Receptor de Interleucina-7/metabolismo , Interleucinas/imunologia , Mucosa Intestinal/citologia , Linfócitos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Receptor 1 Desencadeador da Citotoxicidade Natural/metabolismo , Proteínas Proto-Oncogênicas c-kit/metabolismo , Receptores de Interleucina-7 , alfa-Defensinas/biossíntese , alfa-Defensinas/imunologia , Interleucina 22
16.
Exp Mol Med ; 45: e6, 2013 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-23306703

RESUMO

T-helper (Th)17 cell responses are important for the development of neutrophilic inflammatory disease. Recently, we found that acetyl salicylic acid (ASA) inhibited Th17 airway inflammation in an asthma mouse model induced by sensitization with lipopolysaccharide (LPS)-containing allergens. To investigate the mechanism(s) of the inhibitory effect of ASA on the development of Th17 airway inflammation, a neutrophilic asthma mouse model was generated by intranasal sensitization with LPS plus ovalbumin (OVA) and then challenged with OVA alone. Immunologic parameters and airway inflammation were evaluated 6 and 48 h after the last OVA challenge. ASA inhibited the production of interleukin (IL)-17 from lung T cells as well as in vitro Th17 polarization induced by IL-6. Additionally, ASA, but not salicylic acid, suppressed Th17 airway inflammation, which was associated with decreased expression of acetyl-STAT3 (downstream signaling of IL-6) in the lung. Moreover, the production of IL-6 from inflammatory cells, induced by IL-17, was abolished by treatment with ASA, whereas that induced by LPS was not. Altogether, ASA, likely via its acetyl moiety, inhibits Th17 airway inflammation by blockade of IL-6 and IL-17 positive feedback.


Assuntos
Aspirina/uso terapêutico , Retroalimentação Fisiológica/efeitos dos fármacos , Interleucina-17/metabolismo , Interleucina-6/metabolismo , Pneumonia/tratamento farmacológico , Pneumonia/imunologia , Células Th17/imunologia , Animais , Aspirina/farmacologia , Polaridade Celular/efeitos dos fármacos , Polaridade Celular/imunologia , Interferon gama/deficiência , Interferon gama/metabolismo , Interleucina-17/farmacologia , Interleucina-6/biossíntese , Lipopolissacarídeos/farmacologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Pneumonia/patologia , Células Th17/efeitos dos fármacos , Células Th17/patologia , Fator de Crescimento Transformador beta1/farmacologia
17.
Clin Immunol ; 144(3): 190-9, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22836084

RESUMO

IL-12p40 homodimer is a natural antagonist of IL-12 and IL-23, which are potent pro-inflammatory cytokines required for Th1 and Th17 immune responses, respectively. It has been reported that Th17 response is involved in inflammatory bowel disease (IBD), a chronic disorder of the digestive system with steadily increasing incidence. Here, we investigated the effects of IL-12p40 delivered via recombinant adenovirus (rAd/IL-12p40) or mesenchymal stem cells (MSC/IL-12p40) in a dextran sulfate sodium salt (DSS)-induced colitis model. Injection of rAd/IL-12p40 or MSC/IL-12p40 efficiently attenuated colitis symptoms and tissue damage, leading to an increased survival rate. Moreover, IL-12p40 delivery suppressed IL-17A, but enhanced IFN-γ production from mesenteric lymph node cells, supporting the preferential suppression of IL-23 by IL-12p40 homodimer in vitro and the suppression of Th17 responses in vivo. Our results demonstrate that IL-12p40 delivery ameliorates DSS-induced colitis by suppressing IL-17A production and inflammation in the intestinal mucosa, providing an effective new therapeutic strategy for IBDs.


Assuntos
Colite/imunologia , Inflamação/imunologia , Doenças Inflamatórias Intestinais/imunologia , Subunidade p40 da Interleucina-12/imunologia , Interleucina-17/imunologia , Mucosa Intestinal/imunologia , Adenoviridae/imunologia , Animais , Colite/induzido quimicamente , Sulfato de Dextrana , Modelos Animais de Doenças , Feminino , Interferon gama/imunologia , Interleucina-12/imunologia , Interleucina-23/imunologia , Linfonodos/imunologia , Células-Tronco Mesenquimais/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley , Células Th17/imunologia
18.
J Immunol ; 188(3): 1108-16, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22198947

RESUMO

The intestinal immune system is constantly challenged by commensal bacteria; therefore, it must maintain quiescence via several regulatory mechanisms. Although intestinal macrophages (Ms) have been implicated in repression of excessive inflammation, it remains unclear how their functions are regulated during inflammation. In this study, we report that semaphorin 7A (Sema7A), a GPI-anchored semaphorin expressed in intestinal epithelial cells (IECs), induces IL-10 production by intestinal Mϕs to regulate intestinal inflammation. Sema7A-deficient mice showed severe signs of dextran sodium sulfate-induced colitis due to reduced intestinal IL-10 levels. We further identified CX3CR1(+)MHC class II(int)F4/80(hi)CD11b(hi) Mϕs as the main producers of IL-10 via αvß1 integrin in response to Sema7A. Notably, Sema7A was predominantly expressed on the basolateral side of IECs, and its expression pattern was responsible for protective effects against dextran sodium sulfate-induced colitis and IL-10 production by Mϕs during interactions between IECs and Mϕs. Furthermore, we determined that the administration of recombinant Sema7A proteins ameliorated the severity of colitis, and these effects were diminished by IL-10-blocking Abs. Therefore, our findings not only indicate that Sema7A plays crucial roles in suppressing intestinal inflammation through αvß1 integrin, but also provide a novel mode of IL-10 induction via interactions between IECs and Mϕs.


Assuntos
Antígenos CD/fisiologia , Colite/patologia , Receptores de Vitronectina/fisiologia , Semaforinas/fisiologia , Animais , Comunicação Celular , Colite/etiologia , Células Epiteliais/metabolismo , Interleucina-10/biossíntese , Interleucina-10/genética , Intestinos , Macrófagos , Camundongos
19.
J Immunol ; 187(5): 2268-77, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21775684

RESUMO

Eosinophils are abundant in the lamina propria of the small intestine, but they rarely show degranulation in situ under steady-state conditions. In this study, using two novel mAbs, we found that intestinal eosinophils constitutively expressed a high level of an inhibitory receptor signal regulatory protein α (SIRPα)/CD172a and a low, but significant, level of a tetraspanin CD63, whose upregulation is closely associated with degranulation. Cross-linking SIRPα/CD172a on the surface of wild-type eosinophils significantly inhibited the release of eosinophil peroxidase induced by the calcium ionophore A23187, whereas this cross-linking effect was not observed in eosinophils isolated from mice expressing a mutated SIRPα/CD172a that lacks most of its cytoplasmic domain (SIRPα Cyto(-/-)). The SIRPα Cyto(-/-) eosinophils showed reduced viability, increased CD63 expression, and increased eosinophil peroxidase release with or without A23187 stimulation in vitro. In addition, SIRPα Cyto(-/-) mice showed increased frequencies of Annexin V-binding eosinophils and free MBP(+)CD63(+) extracellular granules, as well as increased tissue remodeling in the small intestine under steady-state conditions. Mice deficient in CD47, which is a ligand for SIRPα/CD172a, recapitulated these phenomena. Moreover, during Th2-biased inflammation, increased eosinophil cell death and degranulation were obvious in a number of tissues, including the small intestine, in the SIRPα Cyto(-/-) mice compared with wild-type mice. Collectively, our results indicated that SIRPα/CD172a regulates eosinophil homeostasis, probably by interacting with CD47, with substantial effects on eosinophil survival. Thus, SIRPα/CD172a is a potential therapeutic target for eosinophil-associated diseases.


Assuntos
Eosinófilos/metabolismo , Homeostase/imunologia , Receptores Imunológicos/imunologia , Animais , Antígenos CD/imunologia , Antígenos CD/metabolismo , Western Blotting , Antígeno CD47/imunologia , Antígeno CD47/metabolismo , Degranulação Celular/imunologia , Separação Celular , Cromatografia Líquida , Eosinófilos/imunologia , Feminino , Citometria de Fluxo , Imunofluorescência , Imunidade nas Mucosas/imunologia , Imunoprecipitação , Mucosa Intestinal/citologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Glicoproteínas da Membrana de Plaquetas/imunologia , Glicoproteínas da Membrana de Plaquetas/metabolismo , Receptores Imunológicos/metabolismo , Tetraspanina 30
20.
Inflamm Bowel Dis ; 17(2): 491-502, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20602470

RESUMO

BACKGROUND: The efficacy of anti-tumor necrosis factor monoclonal antibody (anti-TNF mAb) for Crohn's disease (CD) is well established, and anti-interleukin-6 receptor (anti-IL-6R) mAb has also been reported to be effective in CD. It is, however, unclear if the efficacy and mechanisms of both agents are different in CD therapy. METHODS: Using an adoptive transfer colitis model, we compared the efficacy of anti-IL-6R mAb, anti-TNF mAb, and TNF receptor-Fc fusion protein (TNFR-Fc), and their modes of action on CD4+ T cells. We also investigated the role of Th1 and Th17 cells in colitis using the same model. RESULTS: The histological scores for the anti-IL-6R mAb and anti-TNF mAb groups but not for TNFR-Fc group were much lower than that for the control group, and the score was the lowest for the anti-IL-6R mAb group. The frequency of proliferating CD4+ T cells was reduced in anti-IL-6R mAb and anti-TNF mAb groups, but not in the TNFR-Fc group, whereas the frequency of apoptotic CD4+ T cells was similar in all groups. Anti-IL-6R mAb suppressed the induction of Th17 cells and increased the frequency of lamina propria regulatory T cells, whereas anti-TNF mAb exerted no influence on CD4+ T-cell differentiation. A deficiency in interferon-γ and/or IL-17 in CD4+ T cells reduced the severity of colitis. CONCLUSIONS: Our findings suggest that suppression of the proliferation of pathogenic CD4+ T cells is the major mode of action of biological agents for colitis therapy. Anti-IL-6R mAb might have benefits in CD patients with Th17 dominance and impaired Treg frequency.


Assuntos
Anticorpos Anti-Idiotípicos/farmacologia , Anticorpos Monoclonais/farmacologia , Linfócitos T CD4-Positivos/imunologia , Colite/imunologia , Receptores de Interleucina-6/imunologia , Fator de Necrose Tumoral alfa/imunologia , Animais , Anticorpos Anti-Idiotípicos/imunologia , Anticorpos Monoclonais/imunologia , Western Blotting , Diferenciação Celular , Proliferação de Células , Colite/metabolismo , Colite/patologia , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Interferon gama/fisiologia , Interleucina-17/fisiologia , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos SCID , Células Th1/imunologia , Células Th17/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA