Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39000187

RESUMO

The ketogenic diet (KD) is characterized by minimal carbohydrate, moderate protein, and high fat intake, leading to ketosis. It is recognized for its efficiency in weight loss, metabolic health improvement, and various therapeutic interventions. The KD enhances glucose and lipid metabolism, reducing triglycerides and total cholesterol while increasing high-density lipoprotein levels and alleviating dyslipidemia. It significantly influences adipose tissue hormones, key contributors to systemic metabolism. Brown adipose tissue, essential for thermogenesis and lipid combustion, encounters modified UCP1 levels due to dietary factors, including the KD. UCP1 generates heat by uncoupling electron transport during ATP synthesis. Browning of the white adipose tissue elevates UCP1 levels in both white and brown adipose tissues, a phenomenon encouraged by the KD. Ketone oxidation depletes intermediates in the Krebs cycle, requiring anaplerotic substances, including glucose, glycogen, or amino acids, for metabolic efficiency. Methylation is essential in adipogenesis and the body's dietary responses, with DNA methylation of several genes linked to weight loss and ketosis. The KD stimulates FGF21, influencing metabolic stability via the UCP1 pathways. The KD induces a reduction in muscle mass, potentially involving anti-lipolytic effects and attenuating proteolysis in skeletal muscles. Additionally, the KD contributes to neuroprotection, possesses anti-inflammatory properties, and alters epigenetics. This review encapsulates the metabolic effects and signaling induced by the KD in adipose tissue and major metabolic organs.


Assuntos
Dieta Cetogênica , Humanos , Animais , Tecido Adiposo/metabolismo , Metabolismo dos Lipídeos , Proteína Desacopladora 1/metabolismo , Proteína Desacopladora 1/genética , Metabolismo Energético , Tecido Adiposo Marrom/metabolismo , Termogênese
2.
Life Sci ; 351: 122843, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38880168

RESUMO

AIMS: Carbohydrate-responsive element-binding protein (ChREBP) is a transcription factor that regulates several metabolic genes, including the lipogenic enzymes necessary for the metabolic conversion of carbohydrates into lipids. Although the crucial role of ChREBP in the liver, the primary site of de novo lipogenesis, has been studied, its functional role in adipose tissues, particularly brown adipose tissue (BAT), remains unclear. In this study, we investigated the role of ChREBP in BAT under conditions of a high-carbohydrate diet (HCD) and ketogenic diet (KD), represented by extremely low carbohydrate intake. MAIN METHODS: Using an adeno-associated virus and Cas9 knock-in mice, we rapidly generated Chrebp brown adipocyte-specific knock-out (B-KO) mice, bypassing the necessity for prolonged breeding by using the Cre-Lox system. KEY FINDINGS: We demonstrated that ChREBP is essential for glucose metabolism and lipogenic gene expression in BAT under HCD conditions in Chrebp B-KO mice. After nutrient intake, Chrebp B-KO attenuated the KD-induced expression of several inflammatory genes in BAT. SIGNIFICANCE: Our results indicated that ChREBP, a nutrient-sensing regulator, is indispensable for expressing a diverse range of metabolic genes in BAT.


Assuntos
Tecido Adiposo Marrom , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Regulação da Expressão Gênica , Lipogênese , Camundongos Knockout , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Tecido Adiposo Marrom/metabolismo , Camundongos , Lipogênese/genética , Masculino , Glucose/metabolismo , Camundongos Endogâmicos C57BL , Dieta Cetogênica , Nutrientes/metabolismo
3.
Genes (Basel) ; 14(5)2023 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-37239373

RESUMO

Metformin, the most commonly used drug for type 2 diabetes, has recently been shown to have beneficial effects in patients with cancer. Despite growing evidence that metformin can inhibit tumor cell proliferation, invasion, and metastasis, studies on drug resistance and its side effects are lacking. Here, we aimed to establish metformin-resistant A549 human lung cancer cells (A549-R) to determine the side effects of metformin resistance. Toward this, we established A549-R by way of prolonged treatment with metformin and examined the changes in gene expression, cell migration, cell cycle, and mitochondrial fragmentation. Metformin resistance is associated with increased G1-phase cell cycle arrest and impaired mitochondrial fragmentation in A549 cells. We demonstrated that metformin resistance highly increased the expression of proinflammatory and invasive genes, including BMP5, CXCL3, VCAM1, and POSTN, using RNA-seq analysis. A549-R exhibited increased cell migration and focal adhesion formation, suggesting that metformin resistance may potentially lead to metastasis during anti-cancer therapy with metformin. Taken together, our findings indicate that metformin resistance may lead to invasion in lung cancer cells.


Assuntos
Diabetes Mellitus Tipo 2 , Neoplasias Pulmonares , Metformina , Humanos , Células A549 , Metformina/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Proliferação de Células/genética
4.
Biochem Biophys Res Commun ; 637: 144-152, 2022 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-36399800

RESUMO

Cancer cells exhibit increased glutamine consumption compared to normal cells, supporting cell survival and proliferation. Glutamine is converted to α-ketoglutarate (αKG), which then enters the tricarboxylic acid cycle to generate ATP. Recently, therapeutic modulation of glutamine metabolism has become an attractive metabolic anti-cancer strategy. However, how synergistic combination therapy is required to overcome glutamine metabolism drug resistance remains elusive. To address this issue, we first investigated the role of αKG in regulating gene expression in several cancer cell lines. Using RNA-seq analysis and histone modification screening, we demonstrated that αKG reduced the expression of the immediate early gene (IEG) in cancer cells in an H3K27 acetylation-dependent manner. Conversely, glutaminase (GLS) inhibitors induce IEG expression in cancer cells. Furthermore, we showed that siRNA knockdown of orphan nuclear receptor subfamily 4 group A member 1 (NR4A1) induces IEG expression. Notably, the NR4A1 agonist cytosporone B sensitizes GLS inhibitor resistance to cancer cell death. Together, these findings indicate that therapeutic targeting of IEG dysregulation by αKG can be a potentially effective anti-cancer therapeutic strategy for glutamine metabolism inhibitors.


Assuntos
Genes Precoces , Neoplasias , Ácidos Cetoglutáricos , Glutamina , Ciclo do Ácido Cítrico , Terapia Combinada , Neoplasias/tratamento farmacológico , Neoplasias/genética
5.
Cell Death Dis ; 13(2): 115, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-35121737

RESUMO

Cathepsin D (Cat D) is well known for its roles in metastasis, angiogenesis, proliferation, and carcinogenesis in cancer. Despite Cat D being a promising target in cancer cells, effects and underlying mechanism of its inhibition remain unclear. Here, we investigated the plausibility of using Cat D inhibition as an adjuvant or sensitizer for enhancing anticancer drug-induced apoptosis. Inhibition of Cat D markedly enhanced anticancer drug-induced apoptosis in human carcinoma cell lines and xenograft models. The inhibition destabilized Bcl-xL through upregulation of the expression of RNF183, an E3 ligase of Bcl-xL, via NF-κB activation. Furthermore, Cat D inhibition increased the proteasome activity, which is another important factor in the degradation of proteins. Cat D inhibition resulted in p62-dependent activation of Nrf2, which increased the expression of proteasome subunits (PSMA5 and PSMB5), and thereby, the proteasome activity. Overall, Cat D inhibition sensitized cancer cells to anticancer drugs through the destabilization of Bcl-xL. Furthermore, human renal clear carcinoma (RCC) tissues revealed a positive correlation between Cat D and Bcl-xL expression, whereas RNF183 and Bcl-xL expression indicated inverse correlation. Our results suggest that inhibition of Cat D is promising as an adjuvant or sensitizer for enhancing anticancer drug-induced apoptosis in cancer cells.


Assuntos
Antineoplásicos , Carcinoma de Células Renais , Catepsina D , Neoplasias Renais , Ubiquitina-Proteína Ligases , Antineoplásicos/farmacologia , Apoptose , Carcinoma de Células Renais/tratamento farmacológico , Catepsina D/antagonistas & inibidores , Linhagem Celular Tumoral , Humanos , Neoplasias Renais/tratamento farmacológico , Complexo de Endopeptidases do Proteassoma , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteína bcl-X/metabolismo
6.
Biochim Biophys Acta Mol Basis Dis ; 1867(5): 166084, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33497821

RESUMO

In osteoporosis, mesenchymal stem cells (MSCs) prefer to differentiate into adipocytes at the expense of osteoblasts. Although the balance between adipogenesis and osteogenesis has been closely examined, the mechanism of commitment determination switch is unknown. Here we demonstrate that phospholipase D1 (PLD1) plays a key switch in determining the balance between bone and fat mass. Ablation of Pld1 reduced bone mass but increased fat in mice. Mechanistically, Pld1/- MSCs inhibited osteoblast differentiaion with diminished Runx2 expression, while osteoclast differentiation was accelerated in Pld1-/- bone marrow-derived macrophages. Pld1-/- osteoblasts showed decreased expression of osteogenic makers. Increased number and resorption activity of osteoclasts in Pld1-/- mice were corroborated with upregulation of osteoclastogenic markers. Moreover, Pld1-/- osteoblasts reduced ß-catenin mediated-osteoprotegerin (OPG) with increased RANKL/OPG ratio which resulted in accelerated osteoclast differentiation. Thus, low bone mass with upregulated osteoclasts could be due to the contribution of both osteoblasts and osteoclasts during bone remodeling. Moreover, ablation of Pld1 further increased bone loss in ovariectomized mice, suggesting that PLD1 is a negative regulator of osteoclastogenesis. Furthermore, loss of PLD1 increased adipogenesis, body fat mass, and hepatic steatosis along with upregulation of PPAR-γ and C/EBPα. Interestingly, adipocyte-specific Pld1 transgenic mice rescued the compromised phenotypes of fat mass and adipogenesis in Pld1 knockout mice. Collectively, PLD1 regulated the bifurcating pathways of mesenchymal cell lineage into increased osteogenesis and decreased adipogenesis, which uncovered a previously unrecognized role of PLD1 in homeostasis between bone and fat mass.


Assuntos
Adipogenia , Reabsorção Óssea/patologia , Regulação da Expressão Gênica , Osteogênese , Fosfolipase D/fisiologia , Animais , Reabsorção Óssea/etiologia , Reabsorção Óssea/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteoprotegerina/genética , Osteoprotegerina/metabolismo , PPAR gama/genética , PPAR gama/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
7.
J Cell Physiol ; 236(1): 549-560, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32869317

RESUMO

Glioblastoma (GBM) is an aggressive brain tumor and drug resistance remains a major barrier for therapeutics. Epigenetic alterations are implicated in GBM pathogenesis, and epigenetic modulators including histone deacetylase (HDAC) inhibitors are exploited as promising anticancer therapies. Here, we demonstrate that phospholipase D1 (PLD1) is a transcriptional target of HDAC inhibitors and confers resistance to HDAC inhibitor in GBM. Treatment of vorinostat upregulates PLD1 through PKCζ-Sp1 axis. Vorinostat induces dynamic changes in the chromatin structure and transcriptional machinery associated with PLD1 promoter region. Cotreatment of vorinostat with PLD1 inhibitor further attenuates invasion, angiogenesis, colony-forming capacity, and self-renewal capacity, compared with those of either treatment. PLD1 inhibitor overcomes resistance to vorinostat in GBM cells intracranial GBM tumors. Our finding provides new insight into the role of PLD1 as a target of resistance to vorinostat, and PLD1 inhibitor might provide the basis for therapeutic combinations with improved efficacy of HDAC inhibitor.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Fosfolipase D/metabolismo , Regulação para Cima/efeitos dos fármacos , Vorinostat/farmacologia , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Cromatina/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Epigenômica/métodos , Inibidores de Histona Desacetilases/farmacologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Regiões Promotoras Genéticas/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Células U937
8.
Biol Res ; 53(1): 34, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32998768

RESUMO

BACKGROUND: Histone deacetylase (HDAC) inhibitors are promising anticancer drugs but their effect on tumor treatment has been disappointing mainly due to the acquisition of HDAC inhibitor resistance. However, the mechanisms underlying such resistance remain unclear. METHODS: In this study, we performed Western blot, q-PCR, and promoter assay to examine the expression of HDAC inhibitor-induced phospholipase D2 (PLD2) in MDA-MB231and MDA-MB435 breast cancer cells. Apoptosis and proliferation were analyzed by flow cytometry. In addition to invasion and migration assay, angiogenesis was further measured using in vitro tube formation and chick embryo chorioallantoic membrane model. RESULTS: HDAC inhibitors including suberoylanilide hydroxamic acid (SAHA), trichostatin, and apicidin, induce expression of PLD2 in a transcriptional level. SAHA upregulates expression of PLD2 via protein kinase C-ζ in breast cancer cells and increases the enzymatic activity of PLD. The combination treatment of SAHA with PLD2 inhibitor significantly enhances cell death in breast cancer cells. Phosphatidic acid, a product of PLD activity, prevented apoptosis promoted by cotreatment with SAHA and PLD2 inhibitor, suggesting that SAHA-induced PLD2 expression and subsequent activation of PLD2 might confers resistance of breast cancer cells to HDAC inhibitor. The combinational treatment of the drugs significantly suppressed invasion, migration, and angiogenesis, compared with that of either treatment. CONCLUSION: These findings provide further insight into elucidating the advantages of combination therapy with HDAC and PLD2 inhibitors over single-agent strategies for the treatment of cancer.


Assuntos
Neoplasias da Mama , Inibidores de Histona Desacetilases , Animais , Neoplasias da Mama/tratamento farmacológico , Morte Celular , Embrião de Galinha , Células Endoteliais , Inibidores de Histona Desacetilases/farmacologia , Humanos , Fosfolipase D
9.
Nat Commun ; 10(1): 2314, 2019 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-31127101

RESUMO

Histone methyltransferase MLL4 is centrally involved in transcriptional regulation and is often mutated in human diseases, including cancer and developmental disorders. MLL4 contains a catalytic SET domain that mono-methylates histone H3K4 and seven PHD fingers of unclear function. Here, we identify the PHD6 finger of MLL4 (MLL4-PHD6) as a selective reader of the epigenetic modification H4K16ac. The solution NMR structure of MLL4-PHD6 in complex with a H4K16ac peptide along with binding and mutational analyses reveal unique mechanistic features underlying recognition of H4K16ac. Genomic studies show that one third of MLL4 chromatin binding sites overlap with H4K16ac-enriched regions in vivo and that MLL4 occupancy in a set of genomic targets depends on the acetyltransferase activity of MOF, a H4K16ac-specific acetyltransferase. The recognition of H4K16ac is conserved in the PHD7 finger of paralogous MLL3. Together, our findings reveal a previously uncharacterized acetyllysine reader and suggest that selective targeting of H4K16ac by MLL4 provides a direct functional link between MLL4, MOF and H4K16 acetylation.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Histona Acetiltransferases/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Dedos de Zinco PHD/fisiologia , Acetilação , Animais , Sítios de Ligação , Cromatina/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/isolamento & purificação , Técnicas de Inativação de Genes , Células HEK293 , Histona Acetiltransferases/genética , Histona-Lisina N-Metiltransferase/química , Histonas/química , Humanos , Camundongos Transgênicos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Ressonância Magnética Nuclear Biomolecular , Processamento de Proteína Pós-Traducional/fisiologia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
10.
Cell ; 177(3): 608-621.e12, 2019 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-30955891

RESUMO

Normal tissues accumulate genetic changes with age, but it is unknown if somatic mutations promote clonal expansion of non-malignant cells in the setting of chronic degenerative diseases. Exome sequencing of diseased liver samples from 82 patients revealed a complex mutational landscape in cirrhosis. Additional ultra-deep sequencing identified recurrent mutations in PKD1, PPARGC1B, KMT2D, and ARID1A. The number and size of mutant clones increased as a function of fibrosis stage and tissue damage. To interrogate the functional impact of mutated genes, a pooled in vivo CRISPR screening approach was established. In agreement with sequencing results, examination of 147 genes again revealed that loss of Pkd1, Kmt2d, and Arid1a promoted clonal expansion. Conditional heterozygous deletion of these genes in mice was also hepatoprotective in injury assays. Pre-malignant somatic alterations are often viewed through the lens of cancer, but we show that mutations can promote regeneration, likely independent of carcinogenesis.


Assuntos
Hepatopatias/patologia , Fígado/metabolismo , Regeneração , Animais , Doença Crônica , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Humanos , Hidrolases/deficiência , Hidrolases/genética , Fígado/patologia , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/genética , Cirrose Hepática/patologia , Hepatopatias/genética , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Mutação , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Regeneração/fisiologia , Canais de Cátion TRPP/genética , Canais de Cátion TRPP/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Sequenciamento do Exoma
11.
Cancer Cell ; 34(4): 643-658.e5, 2018 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-30270123

RESUMO

Aberrant expression of HOXA9 is a prominent feature of acute leukemia driven by diverse oncogenes. Here we show that HOXA9 overexpression in myeloid and B progenitor cells leads to significant enhancer reorganizations with prominent emergence of leukemia-specific de novo enhancers. Alterations in the enhancer landscape lead to activation of an ectopic embryonic gene program. We show that HOXA9 functions as a pioneer factor at de novo enhancers and recruits CEBPα and the MLL3/MLL4 complex. Genetic deletion of MLL3/MLL4 blocks histone H3K4 methylation at de novo enhancers and inhibits HOXA9/MEIS1-mediated leukemogenesis in vivo. These results suggest that therapeutic targeting of HOXA9-dependent enhancer reorganization can be an effective therapeutic strategy in acute leukemia with HOXA9 overexpression.


Assuntos
Proteínas de Homeodomínio/genética , Leucemia Mieloide Aguda/genética , Animais , Transformação Celular Neoplásica , Elementos Facilitadores Genéticos/genética , Humanos , Metilação , Regiões Promotoras Genéticas/genética
12.
Nat Commun ; 8(1): 2217, 2017 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-29263365

RESUMO

The epigenomic reader Brd4 is an important drug target for cancers. However, its role in cell differentiation and animal development remains largely unclear. Using two conditional knockout mouse strains and derived cells, we demonstrate that Brd4 controls cell identity gene induction and is essential for adipogenesis and myogenesis. Brd4 co-localizes with lineage-determining transcription factors (LDTFs) on active enhancers during differentiation. LDTFs coordinate with H3K4 mono-methyltransferases MLL3/MLL4 (KMT2C/KMT2D) and H3K27 acetyltransferases CBP/p300 to recruit Brd4 to enhancers activated during differentiation. Brd4 deletion prevents the enrichment of Mediator and RNA polymerase II transcription machinery, but not that of LDTFs, MLL3/MLL4-mediated H3K4me1, and CBP/p300-mediated H3K27ac, on enhancers. Consequently, Brd4 deletion prevents enhancer RNA production, cell identity gene induction and cell differentiation. Interestingly, Brd4 is dispensable for maintaining cell identity genes in differentiated cells. These findings identify Brd4 as an enhancer epigenomic reader that links active enhancers with cell identity gene induction in differentiation.


Assuntos
Adipogenia/genética , Desenvolvimento Muscular/genética , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Animais , Diferenciação Celular/genética , Linhagem da Célula , Elementos Facilitadores Genéticos , Epigênese Genética , Regulação da Expressão Gênica , Código das Histonas , Histona-Lisina N-Metiltransferase/metabolismo , Camundongos , Camundongos Knockout , Proteínas Nucleares/metabolismo , RNA Polimerase II/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição de p300-CBP/metabolismo
13.
Gene ; 627: 337-342, 2017 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-28669924

RESUMO

Histone-lysine N-methyltransferase 2D (KMT2D), also known as MLL4 and MLL2 in humans and Mll4 in mice, belongs to a family of mammalian histone H3 lysine 4 (H3K4) methyltransferases. It is a large protein over 5500 amino acids in size and is partially functionally redundant with KMT2C. KMT2D is widely expressed in adult tissues and is essential for early embryonic development. The C-terminal SET domain is responsible for its H3K4 methyltransferase activity and is necessary for maintaining KMT2D protein stability in cells. KMT2D associates with WRAD (WDR5, RbBP5, ASH2L, and DPY30), NCOA6, PTIP, PA1, and H3K27 demethylase UTX in one protein complex. It acts as a scaffold protein within the complex and is responsible for maintaining the stability of UTX. KMT2D is a major mammalian H3K4 mono-methyltransferase and co-localizes with lineage determining transcription factors on transcriptional enhancers. It is required for the binding of histone H3K27 acetyltransferases CBP and p300 on enhancers, enhancer activation and cell-type specific gene expression during differentiation. KMT2D plays critical roles in regulating development, differentiation, metabolism, and tumor suppression. It is frequently mutated in developmental diseases, such as Kabuki syndrome and congenital heart disease, and various forms of cancer. Further understanding of the mechanism through which KMT2D regulates gene expression will reveal why KMT2D mutations are so harmful and may help generate novel therapeutic approaches.


Assuntos
Histona-Lisina N-Metiltransferase/metabolismo , Neoplasias/genética , Animais , Histona-Lisina N-Metiltransferase/química , Histona-Lisina N-Metiltransferase/genética , Histonas/metabolismo , Humanos , Mutação , Neoplasias/metabolismo
14.
J Mol Biol ; 429(13): 2046-2054, 2017 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-28013028

RESUMO

Transcriptional enhancers play a key role in cell type-specific gene expression and cell fate transition. Enhancers are marked by histone H3K4 mono- and di-methylation (H3K4me1/2). The tumor suppressor MLL4 (KMT2D) is a major enhancer H3K4 mono- and di-methyltransferase with a partial functional redundancy with MLL3 (KMT2C). However, the functional role of MLL4 enzymatic activity remains elusive. To address this issue, we have generated MLL4 enzyme-dead knock-in (KI) embryonic stem (ES) cells and mice, which carry Y5477A/Y5523A/Y5563A mutations in the enzymatic SET domain of the MLL4 protein. Homozygous MLL4 enzyme-dead KI (Mll4KI/KI) mice are embryonic lethal and die around E10.5, which phenocopies Mll4 knockout mice. Interestingly, enzyme-dead MLL4 protein in ES cells is highly unstable. Like Mll4 knockout ES cells, Mll4KI/KI ES cells show reduced levels of H3K4me1/2. Furthermore, we show that ectopic expression of histone H3.3 lysine 4-to-methionine (K4M) mutant, which reduces endogenous H3K4 methylation levels in ES cells, decreases the protein stability of MLL3 and MLL4 but not that of H3K4 methyltransferases SET1A (KMT2F) and SET1B (KMT2G). Taken together, our findings indicate that MLL4 protein stability is tightly regulated by its H3K4 methyltransferase activity.


Assuntos
Histona-Lisina N-Metiltransferase/química , Histona-Lisina N-Metiltransferase/metabolismo , Metiltransferases/metabolismo , Processamento de Proteína Pós-Traducional , Substituição de Aminoácidos , Animais , Análise Mutacional de DNA , Células-Tronco Embrionárias/enzimologia , Histona-Lisina N-Metiltransferase/genética , Camundongos Knockout , Mutação de Sentido Incorreto , Estabilidade Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA