Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cardiovasc Res ; 113(3): 354-366, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28395022

RESUMO

Aims: Anatomical re-entry is an important mechanism of ventricular tachycardia, characterized by circular electrical propagation in a fixed pathway. It's current investigative and therapeutic approaches are non-biological, rather unspecific (drugs), traumatizing (electrical shocks), or irreversible (ablation). Optogenetics is a new biological technique that allows reversible modulation of electrical function with unmatched spatiotemporal precision using light-gated ion channels. We therefore investigated optogenetic manipulation of anatomical re-entry in ventricular cardiac tissue. Methods and results: Transverse, 150-µm-thick ventricular slices, obtained from neonatal rat hearts, were genetically modified with lentiviral vectors encoding Ca2+-translocating channelrhodopsin (CatCh), a light-gated depolarizing ion channel, or enhanced yellow fluorescent protein (eYFP) as control. Stable anatomical re-entry was induced in both experimental groups. Activation of CatCh was precisely controlled by 470-nm patterned illumination, while the effects on anatomical re-entry were studied by optical voltage mapping. Regional illumination in the pathway of anatomical re-entry resulted in termination of arrhythmic activity only in CatCh-expressing slices by establishing a local and reversible, depolarization-induced conduction block in the illuminated area. Systematic adjustment of the size of the light-exposed area in the re-entrant pathway revealed that re-entry could be terminated by either wave collision or extinction, depending on the depth (transmurality) of illumination. In silico studies implicated source-sink mismatches at the site of subtransmural conduction block as an important factor in re-entry termination. Conclusions: Anatomical re-entry in ventricular tissue can be manipulated by optogenetic induction of a local and reversible conduction block in the re-entrant pathway, allowing effective re-entry termination. These results provide distinctively new mechanistic insight into re-entry termination and a novel perspective for cardiac arrhythmia management.


Assuntos
Arritmias Cardíacas/prevenção & controle , Canais de Cálcio/efeitos da radiação , Luz , Miócitos Cardíacos/efeitos da radiação , Optogenética , Rodopsina/efeitos da radiação , Potenciais de Ação , Animais , Animais Recém-Nascidos , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatologia , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Canais de Cálcio/biossíntese , Canais de Cálcio/genética , Simulação por Computador , Vetores Genéticos , Lentivirus/genética , Proteínas Luminescentes/biossíntese , Proteínas Luminescentes/genética , Modelos Cardiovasculares , Miócitos Cardíacos/metabolismo , Ratos Wistar , Rodopsina/biossíntese , Rodopsina/genética , Fatores de Tempo , Técnicas de Cultura de Tecidos , Transfecção , Imagens com Corantes Sensíveis à Voltagem
2.
Cardiovasc Res ; 104(1): 194-205, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25082848

RESUMO

AIMS: Atrial fibrillation (AF) is the most common cardiac arrhythmia and often involves reentrant electrical activation (e.g. spiral waves). Drug therapy for AF can have serious side effects including proarrhythmia, while electrical shock therapy is associated with discomfort and tissue damage. Hypothetically, forced expression and subsequent activation of light-gated cation channels in cardiomyocytes might deliver a depolarizing force sufficient for defibrillation, thereby circumventing the aforementioned drawbacks. We therefore investigated the feasibility of light-induced spiral wave termination through cardiac optogenetics. METHODS AND RESULTS: Neonatal rat atrial cardiomyocyte monolayers were transduced with lentiviral vectors encoding light-activated Ca(2+)-translocating channelrhodopsin (CatCh; LV.CatCh∼eYFP↑) or eYFP (LV.eYFP↑) as control, and burst-paced to induce spiral waves rotating around functional cores. Effects of CatCh activation on reentry were investigated by optical and multi-electrode array (MEA) mapping. Western blot analyses and immunocytology confirmed transgene expression. Brief blue light pulses (10 ms/470 nm) triggered action potentials only in LV.CatCh∼eYFP↑-transduced cultures, confirming functional CatCh-mediated current. Prolonged light pulses (500 ms) resulted in reentry termination in 100% of LV.CatCh∼eYFP↑-transduced cultures (n = 31) vs. 0% of LV.eYFP↑-transduced cultures (n = 11). Here, CatCh activation caused uniform depolarization, thereby decreasing overall excitability (MEA peak-to-peak amplitude decreased 251.3 ± 217.1 vs. 9.2 ± 9.5 µV in controls). Consequently, functional coresize increased and phase singularities (PSs) drifted, leading to reentry termination by PS-PS or PS-boundary collisions. CONCLUSION: This study shows that spiral waves in atrial cardiomyocyte monolayers can be terminated effectively by a light-induced depolarizing current, produced by the arrhythmogenic substrate itself, upon optogenetic engineering. These results provide proof-of-concept for shockless defibrillation.


Assuntos
Fibrilação Atrial/terapia , Luz , Miócitos Cardíacos/efeitos da radiação , Optogenética , Potenciais de Ação , Animais , Animais Recém-Nascidos , Fibrilação Atrial/genética , Fibrilação Atrial/metabolismo , Fibrilação Atrial/fisiopatologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Western Blotting , Estimulação Cardíaca Artificial , Células Cultivadas , Channelrhodopsins , Estudos de Viabilidade , Imunofluorescência , Vetores Genéticos , Átrios do Coração/metabolismo , Átrios do Coração/fisiopatologia , Átrios do Coração/efeitos da radiação , Lentivirus/genética , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Miócitos Cardíacos/metabolismo , Técnicas de Patch-Clamp , Ratos Wistar , Fatores de Tempo , Transdução Genética , Transfecção , Imagens com Corantes Sensíveis à Voltagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA