Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Monit Assess ; 194(1): 9, 2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34874481

RESUMO

Rapid industrialization and development in petrochemical industries have resulted in increased hydrocarbon pollution causing substantial damage to the natural ecosystems including agricultural soils. In the recent, past efforts have been made to treat the contaminated soils using microorganisms by natural processes. Soil bacteria, known for their potential to degrade the soil contaminants, play a vital role in maintaining soil health. In the current study, we observed the influence of hydrocarbon contamination on the physicochemical characteristics and enzymatic activities of the soil. Proteobacteria (30.48%), Actinobacteria (13.91%), and Acidobacteria (12.57%) flourished in the non-contaminated soil whereas contaminated sites were dominated by Proteobacteria (44.02 ± 15.65%). In contrast, the sites experiencing the different degrees of exposure to the hydrocarbon pollution allowed specific augmentation of bacterial taxa (in decreasing order of exposure time), viz. Proteobacteria (60.47%), Firmicutes (32.48%), and Bacteroidetes(13.59%), based on culture-independent approach that suggested their potential role in hydrocarbon degradation as compared to the non-contaminated site. The imputation of metabolic function also supported the positive correlation to the exposure to hydrocarbon pollution, with site 2 being highly abundant for gene families involved in xenobiotics biodegradation. The study provides insights into bacterial community structure with special emphasis on their efficiency to degrade hydrocarbons. The results from the study can help in designing appropriate biodegradation strategies to mitigate the serious problems of oil contamination in agricultural soil.


Assuntos
Petróleo , Poluentes do Solo , Bactérias/genética , Biodegradação Ambiental , Ecossistema , Monitoramento Ambiental , Humanos , Hidrocarbonetos/análise , Petróleo/análise , RNA Ribossômico 16S , Solo , Microbiologia do Solo , Poluentes do Solo/análise
2.
Med J Armed Forces India ; 77(3): 297-301, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34305283

RESUMO

BACKGROUND: With virtually dried out new antibiotic discovery pipeline, emergence and spread of antimicrobial resistance is a cause for global concern. Colistin, a cyclic polypeptide antibiotic, often regarded as last resort for multi drug resistance gram-negative bacteria, is also rendered ineffective by horizontal transfer of resistance genes. Surveillance of colistin resistance in GNB is essential to ascertain molecular epidemiology. METHODS: Whole genome sequencing (WGS) of an unusual colistin resistant urinary isolate of Escherichia coli was performed using Illumina MiSeq platform using 2x250bp V2 chemistry by following the manufactures protocol (Illumina Inc. USA). Multiple web-based bio-informatic tools were utilized to ascertain antibiotic resistant genes. RESULTS: An approximate 5.4 Mb of genome of the urinary isolate AFMC_UC19 was sequenced successfully. Mobile colistin resistance gene (mcr) on the plasmid responsible for horizontal spread was absent in the isolate. CONCLUSION: Colistin resistance has been reported previously in Klebsiella pneumoniae and it is a rare occurrence in Escherichia coli in Indian setting. Although the isolate lack mcr mediated colistin resistance, emergence and spread of colistin resistant in gram-negative bacteria pose a threat.

3.
Artigo em Inglês | MEDLINE | ID: mdl-33439118

RESUMO

A Gram-stain-variable, aerobic, orange pigmented, catalase-positive and oxidase-negative, cocci-shaped bacterium, designated SM7_A14T, isolated from glacier fed sediment sample collected from the Queen Maud Land, near India's Maitri station in Antarctica. Phylogenetic analysis based on 16S rRNA gene sequences revealed highest sequence similarity with Marisediminicola antarctica DSM 22350T (97.3 %), demonstrated distinct phylogenetic positioning of strain SM7_A14T within the genus Marisediminicola. Growth of strain SM7_A14T occurs at 5-25 °C (optimum, 20 °C), pH 7.0-10 (optimum, pH 8.0) with 0-5 % NaCl (optimum 1-4 %, w/v). C15 : 0 anteiso, C17 : 0 anteiso, C16 : 0 iso and C15 : 1 anteiso A are the major fatty acids (>5 % of the total fatty acids). The polar lipid profile consisted of diphosphatidylglycerol and phosphatidylglycerol. The average nucleotide identity (ANI) and digital DNA-DNA hybridization values between SM7_A14T and DSM 22350T were 80.3 and 21.3 %, respectively. The genomic DNA G+C content of the strain SM7_A14T was 68.5 %. Distinguishing characteristics based on the polyphasic analysis indicates strain SM7_A14T as a novel species of genus Marisediminicola for which the name Marisediminicola senii sp. nov., is proposed. The type strain is SM7_A14T (=MCC 4327T=JCM 33936T=LMG 31795T).


Assuntos
Actinobacteria/classificação , Sedimentos Geológicos/microbiologia , Camada de Gelo , Filogenia , Actinobacteria/isolamento & purificação , Regiões Antárticas , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Hibridização de Ácido Nucleico , Fosfolipídeos/química , Pigmentação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
4.
Int J Syst Evol Microbiol ; 69(8): 2452-2458, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31166165

RESUMO

A Gram-stain-negative, aerobic, yellow-pigmented, oxidase-positive and rod-shaped bacterium, designated PRB40T, was isolated from the Godavari River in India during the course of 'Kumbh Mela', the world's largest mass gathering event. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain PRB40T formed a lineage within the family Sphingomonadaceae and was distinct from the most closely related genera Sphingorhabdus, Novosphingobiumand Sphingomonas with sequence similarity values ≤95.2 %. Growth of strain PRB40T occurred at 10-40 °C (optimum 30 °C), at pH 6.0-9.0 (pH 7.0) and with 0-0.5 % (w/v) NaCl concentration (0 %). The major respiratory quinone was ubiquinone-10 (Q-10). It contained C17 : 1ω6c, C14 : 0 2-OH, summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c) and summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c) as the major cellular fatty acids. The predominant polar lipids were phospholipid, phosphatidylethanolamine and sphingoglycolipid. It took sym-homospermidine as the major polyamine. The DNA G+C content based on its draft genome sequence was 63.7 mol%. The polyphasic taxonomic analyses indicated that strain PRB40T represents a novel species of a novel genus within the family Sphingomonadaceae, for which the name Chakrabartia godavariana gen. nov., sp. nov. is proposed. The type strain of Chakrabartia godavariana is PRB40T (=MCC 3406T=GDMCC 1.1197T=KCTC 52678T=LMG 29985T).


Assuntos
Filogenia , Rios/microbiologia , Sphingomonadaceae/classificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Índia , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Microbiologia do Solo , Espermidina/análogos & derivados , Espermidina/química , Sphingomonadaceae/isolamento & purificação , Ubiquinona/química
5.
Int J Syst Evol Microbiol ; 68(5): 1678-1682, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29561259

RESUMO

A Gram-stain-negative, yellowish-orange pigmented, rod-shaped, motile bacterium, designated strain ARC111T, was isolated from sediment of Arctic permafrost at Midtre Lovénbreen glacier, Svalbard. 16S rRNA gene based identification of strain ARC111T demonstrated highest sequence similarities to Subsaxibacter broadyi P7T (97.8 %) and Subsaxibacter arcticus JCM30334T (97.5 %) and ≤95.2 % with all other members of the family Flavobacteriaceae. Phylogenetic analysis revealed the distinct positioning of strain ARC111T within the genus Subsaxibacter. The G+C content of ARC111T was 37.8±0.5 mol% while DNA-DNA hybridization depicted 35.6 % relatedness with S. arcticus JCM30334T. Strain ARC111T had C15 : 0iso, C16 : 0iso 3-OH, C15 : 1iso G, C15 : 0anteiso, C16 : 1iso H and C17 : 0iso 3-OH as major (>5 % of the total) cellular fatty acids and MK-6 was the predominant respiratory quinone. The polar lipid profile of strain ARC111T consisted of phosphatidylethanolamine, aminolipid and an unidentified lipid. Strain ARC111T harboured sym-homospermidine as the major polyamine. Characteristic differences obtained using polyphasic analysis of strain ARC111T and its closest relatives suggested that strain ARC111T is a novel species of genus Subsaxibacter, for which the name Subsaxibacter sediminis sp. nov. has been proposed. The type strain is ARC111T (=MCC 3191T=KCTC 42965T=LMG 29783T=GDMCC 1.1201T).


Assuntos
Flavobacteriaceae/classificação , Sedimentos Geológicos/microbiologia , Camada de Gelo/microbiologia , Filogenia , Regiões Árticas , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Flavobacteriaceae/genética , Flavobacteriaceae/isolamento & purificação , Hibridização de Ácido Nucleico , Fosfatidiletanolaminas/química , Pigmentação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Espermidina/análogos & derivados , Espermidina/química , Svalbard , Vitamina K 2/análogos & derivados , Vitamina K 2/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA