Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 6143, 2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39034309

RESUMO

Wolfram syndrome is a rare genetic disease caused by mutations in the WFS1 or CISD2 gene. A primary defect in Wolfram syndrome involves poor ER Ca2+ handling, but how this disturbance leads to the disease is not known. The current study, performed in primary neurons, the most affected and disease-relevant cells, involving both Wolfram syndrome genes, explains how the disturbed ER Ca2+ handling compromises mitochondrial function and affects neuronal health. Loss of ER Ca2+ content and impaired ER-mitochondrial contact sites in the WFS1- or CISD2-deficient neurons is associated with lower IP3R-mediated Ca2+ transfer from ER to mitochondria and decreased mitochondrial Ca2+ uptake. In turn, reduced mitochondrial Ca2+ content inhibits mitochondrial ATP production leading to an increased NADH/NAD+ ratio. The resulting bioenergetic deficit and reductive stress compromise the health of the neurons. Our work also identifies pharmacological targets and compounds that restore Ca2+ homeostasis, enhance mitochondrial function and improve neuronal health.


Assuntos
Cálcio , Retículo Endoplasmático , Proteínas de Membrana , Mitocôndrias , Neurônios , Síndrome de Wolfram , Síndrome de Wolfram/metabolismo , Síndrome de Wolfram/genética , Cálcio/metabolismo , Mitocôndrias/metabolismo , Retículo Endoplasmático/metabolismo , Animais , Neurônios/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Camundongos , Humanos , Trifosfato de Adenosina/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/genética , Camundongos Knockout , NAD/metabolismo , Sinalização do Cálcio
2.
Geroscience ; 46(5): 4275-4314, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38558215

RESUMO

Down syndrome (DS) is a genetic condition where the person is born with an extra chromosome 21. DS is associated with accelerated aging; people with DS are prone to age-related neurological conditions including an early-onset Alzheimer's disease. Using the Dp(17)3Yey/ + mice, which overexpresses a portion of mouse chromosome 17, which encodes for the transsulfuration enzyme cystathionine ß-synthase (CBS), we investigated the functional role of the CBS/hydrogen sulfide (H2S) pathway in the pathogenesis of neurobehavioral dysfunction in DS. The data demonstrate that CBS is higher in the brain of the DS mice than in the brain of wild-type mice, with primary localization in astrocytes. DS mice exhibited impaired recognition memory and spatial learning, loss of synaptosomal function, endoplasmic reticulum stress, and autophagy. Treatment of mice with aminooxyacetate, a prototypical CBS inhibitor, improved neurobehavioral function, reduced the degree of reactive gliosis in the DS brain, increased the ability of the synaptosomes to generate ATP, and reduced endoplasmic reticulum stress. H2S levels in the brain of DS mice were higher than in wild-type mice, but, unexpectedly, protein persulfidation was decreased. Many of the above alterations were more pronounced in the female DS mice. There was a significant dysregulation of metabolism in the brain of DS mice, which affected amino acid, carbohydrate, lipid, endocannabinoid, and nucleotide metabolites; some of these alterations were reversed by treatment of the mice with the CBS inhibitor. Thus, the CBS/H2S pathway contributes to the pathogenesis of neurological dysfunction in DS in the current animal model.


Assuntos
Autofagia , Cistationina beta-Sintase , Modelos Animais de Doenças , Síndrome de Down , Estresse do Retículo Endoplasmático , Sulfeto de Hidrogênio , Regulação para Cima , Animais , Cistationina beta-Sintase/metabolismo , Cistationina beta-Sintase/genética , Síndrome de Down/metabolismo , Síndrome de Down/fisiopatologia , Síndrome de Down/genética , Sulfeto de Hidrogênio/metabolismo , Camundongos , Estresse do Retículo Endoplasmático/fisiologia , Encéfalo/metabolismo , Ácido Amino-Oxiacético/farmacologia , Comportamento Animal , Masculino , Feminino , Sinapses/metabolismo
3.
Redox Biol ; 51: 102233, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35042677

RESUMO

Using a novel rat model of Down syndrome (DS), the functional role of the cystathionine-ß-synthase (CBS)/hydrogen sulfide (H2S) pathway was investigated on the pathogenesis of brain wave pattern alterations and neurobehavioral dysfunction. Increased expression of CBS and subsequent overproduction of H2S was observed in the brain of DS rats, with CBS primarily localizing to astrocytes and the vasculature. DS rats exhibited neurobehavioral defects, accompanied by a loss of gamma brain wave activity and a suppression of the expression of multiple pre- and postsynaptic proteins. Aminooxyacetate, a prototypical pharmacological inhibitor of CBS, increased the ability of the DS brain tissue to generate ATP in vitro and reversed the electrophysiological and neurobehavioral alterations in vivo. Thus, the CBS/H2S pathway contributes to the pathogenesis of neurological dysfunction in DS, most likely through dysregulation of cellular bioenergetics and gene expression.


Assuntos
Ondas Encefálicas , Síndrome de Down , Sulfeto de Hidrogênio , Animais , Cistationina beta-Sintase/genética , Cistationina beta-Sintase/metabolismo , Metabolismo Energético , Sulfeto de Hidrogênio/metabolismo , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA