Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Dis Model Mech ; 16(7)2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37401371

RESUMO

Oxidative stress has been implicated in the pathogenesis of age-related macular degeneration, the leading cause of blindness in older adults, with retinal pigment epithelium (RPE) cells playing a key role. To better understand the cytotoxic mechanisms underlying oxidative stress, we used cell culture and mouse models of iron overload, as iron can catalyze reactive oxygen species formation in the RPE. Iron-loading of cultured induced pluripotent stem cell-derived RPE cells increased lysosomal abundance, impaired proteolysis and reduced the activity of a subset of lysosomal enzymes, including lysosomal acid lipase (LIPA) and acid sphingomyelinase (SMPD1). In a liver-specific Hepc (Hamp) knockout murine model of systemic iron overload, RPE cells accumulated lipid peroxidation adducts and lysosomes, developed progressive hypertrophy and underwent cell death. Proteomic and lipidomic analyses revealed accumulation of lysosomal proteins, ceramide biosynthetic enzymes and ceramides. The proteolytic enzyme cathepsin D (CTSD) had impaired maturation. A large proportion of lysosomes were galectin-3 (Lgals3) positive, suggesting cytotoxic lysosomal membrane permeabilization. Collectively, these results demonstrate that iron overload induces lysosomal accumulation and impairs lysosomal function, likely due to iron-induced lipid peroxides that can inhibit lysosomal enzymes.


Assuntos
Sobrecarga de Ferro , Proteômica , Camundongos , Animais , Estresse Oxidativo , Lisossomos/metabolismo , Ferro/metabolismo , Sobrecarga de Ferro/metabolismo , Sobrecarga de Ferro/patologia , Células Epiteliais/metabolismo , Pigmentos da Retina/metabolismo , Epitélio Pigmentado da Retina/metabolismo
2.
Nature ; 614(7947): 349-357, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36725930

RESUMO

Tissues derive ATP from two pathways-glycolysis and the tricarboxylic acid (TCA) cycle coupled to the electron transport chain. Most energy in mammals is produced via TCA metabolism1. In tumours, however, the absolute rates of these pathways remain unclear. Here we optimize tracer infusion approaches to measure the rates of glycolysis and the TCA cycle in healthy mouse tissues, Kras-mutant solid tumours, metastases and leukaemia. Then, given the rates of these two pathways, we calculate total ATP synthesis rates. We find that TCA cycle flux is suppressed in all five primary solid tumour models examined and is increased in lung metastases of breast cancer relative to primary orthotopic tumours. As expected, glycolysis flux is increased in tumours compared with healthy tissues (the Warburg effect2,3), but this increase is insufficient to compensate for low TCA flux in terms of ATP production. Thus, instead of being hypermetabolic, as commonly assumed, solid tumours generally produce ATP at a slower than normal rate. In mouse pancreatic cancer, this is accommodated by the downregulation of protein synthesis, one of this tissue's major energy costs. We propose that, as solid tumours develop, cancer cells shed energetically expensive tissue-specific functions, enabling uncontrolled growth despite a limited ability to produce ATP.


Assuntos
Trifosfato de Adenosina , Neoplasias da Mama , Ciclo do Ácido Cítrico , Desaceleração , Neoplasias Pulmonares , Metástase Neoplásica , Neoplasias Pancreáticas , Animais , Camundongos , Trifosfato de Adenosina/biossíntese , Trifosfato de Adenosina/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Ciclo do Ácido Cítrico/fisiologia , Metabolismo Energético , Glicólise , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Especificidade de Órgãos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Biossíntese de Proteínas
3.
Cancer Res ; 82(19): 3486-3498, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-35916672

RESUMO

High-dose ascorbate (vitamin C) has shown promising anticancer activity. Two redox mechanisms have been proposed: hydrogen peroxide generation by ascorbate itself or glutathione depletion by dehydroascorbate (formed by ascorbate oxidation). Here we show that the metabolic effects and cytotoxicity of high-dose ascorbate in vitro result from hydrogen peroxide independently of dehydroascorbate. These effects were suppressed by selenium through antioxidant selenoenzymes including glutathione peroxidase 1 (GPX1) but not the classic ferroptosis-inhibiting selenoenzyme GPX4. Selenium-mediated protection from ascorbate was powered by NADPH from the pentose phosphate pathway. In vivo, dietary selenium deficiency resulted in significant enhancement of ascorbate activity against glioblastoma xenografts. These data establish selenoproteins as key mediators of cancer redox homeostasis. Cancer sensitivity to free radical-inducing therapies, including ascorbate, may depend on selenium, providing a dietary approach for improving their anticancer efficacy. SIGNIFICANCE: Selenium restriction augments ascorbate efficacy and extends lifespan in a mouse xenograft model of glioblastoma, suggesting that targeting selenium-mediated antioxidant defenses merits clinical evaluation in combination with ascorbate and other pro-oxidant therapies.


Assuntos
Glioblastoma , Selênio , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Ácido Ascórbico/farmacologia , Glioblastoma/tratamento farmacológico , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Humanos , Peróxido de Hidrogênio , Camundongos , NADP , Espécies Reativas de Oxigênio , Selênio/metabolismo , Selênio/farmacologia , Selenoproteínas
4.
Cell Syst ; 13(2): 158-172.e9, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-34706266

RESUMO

Pancreatic cancer cells with limited access to free amino acids can grow by scavenging extracellular protein. In a murine model of pancreatic cancer, we performed a genome-wide CRISPR screen for genes required for scavenging-dependent growth. The screen identified key mediators of macropinocytosis, peripheral lysosome positioning, endosome-lysosome fusion, lysosomal protein catabolism, and translational control. The top hit was GCN2, a kinase that suppresses translation initiation upon amino acid depletion. Using isotope tracers, we show that GCN2 is not required for protein scavenging. Instead, GCN2 prevents ribosome stalling but without slowing protein synthesis; cells still use all of the limiting amino acids as they emerge from lysosomes. GCN2 also adapts gene expression to the nutrient-poor environment, reorienting protein synthesis away from ribosomes and toward lysosomal hydrolases, such as cathepsin L. GCN2, cathepsin L, and the other genes identified in the screen are potential therapeutic targets in pancreatic cancer.


Assuntos
Neoplasias Pancreáticas , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae , Aminoácidos/metabolismo , Animais , Catepsina L/metabolismo , Camundongos , Neoplasias Pancreáticas/genética , Proteínas Serina-Treonina Quinases/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Invest Ophthalmol Vis Sci ; 62(14): 20, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34797906

RESUMO

Purpose: The purpose of this study was to present our hypothesis that aging alters metabolic function in ocular tissues. We tested the hypothesis by measuring metabolism in aged murine tissues alongside retinal responses to light. Methods: Scotopic and photopic electroretinogram (ERG) responses in young (3-6 months) and aged (23-26 months) C57Bl/6J mice were recorded. Metabolic flux in retina and eyecup explants was quantified using U-13C-glucose or U-13C-glutamine with gas chromatography-mass spectrometry (GC-MS), O2 consumption rate (OCR) in a perifusion apparatus, and quantifying adenosine triphosphatase (ATP) with a bioluminescence assay. Results: Scotopic and photopic ERG responses were reduced in aged mice. Glucose metabolism, glutamine metabolism, OCR, and ATP pools in retinal explants were mostly unaffected in aged mice. In eyecups, glutamine usage in the Krebs Cycle decreased while glucose metabolism, OCR, and ATP pools remained stable. Conclusions: Our examination of metabolism showed negligible impact of age on retina and an impairment of glutamine anaplerosis in eyecups. The metabolic stability of these tissues ex vivo suggests age-related metabolic alterations may not be intrinsic. Future experiments should focus on determining whether external factors including nutrient supply, oxygen availability, or structural changes influence ocular metabolism in vivo.


Assuntos
Envelhecimento/fisiologia , Retina/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Visão de Cores/fisiologia , Eletrorretinografia , Fusão Flicker/fisiologia , Cromatografia Gasosa-Espectrometria de Massas , Glucose/metabolismo , Glutamina/metabolismo , Luz , Masculino , Metabolômica , Camundongos , Camundongos Endogâmicos C57BL , Visão Noturna/fisiologia , Consumo de Oxigênio/fisiologia , Estimulação Luminosa
6.
Nat Metab ; 2(11): 1284-1304, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33199925

RESUMO

Decreased NAD+ levels have been shown to contribute to metabolic dysfunction during aging. NAD+ decline can be partially prevented by knockout of the enzyme CD38. However, it is not known how CD38 is regulated during aging, and how its ecto-enzymatic activity impacts NAD+ homeostasis. Here we show that an increase in CD38 in white adipose tissue (WAT) and the liver during aging is mediated by accumulation of CD38+ immune cells. Inflammation increases CD38 and decreases NAD+. In addition, senescent cells and their secreted signals promote accumulation of CD38+ cells in WAT, and ablation of senescent cells or their secretory phenotype decreases CD38, partially reversing NAD+ decline. Finally, blocking the ecto-enzymatic activity of CD38 can increase NAD+ through a nicotinamide mononucleotide (NMN)-dependent process. Our findings demonstrate that senescence-induced inflammation promotes accumulation of CD38 in immune cells that, through its ecto-enzymatic activity, decreases levels of NMN and NAD+.


Assuntos
ADP-Ribosil Ciclase 1/metabolismo , Envelhecimento/metabolismo , Glicoproteínas de Membrana/metabolismo , NAD/biossíntese , ADP-Ribosil Ciclase 1/genética , ADP-Ribosil Ciclase 1/imunologia , Adipócitos Brancos/metabolismo , Tecido Adiposo Branco/metabolismo , Envelhecimento/imunologia , Animais , Transplante de Medula Óssea , Senescência Celular , Células HEK293 , Humanos , Inflamação/imunologia , Fígado/crescimento & desenvolvimento , Fígado/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Mononucleotídeo de Nicotinamida/metabolismo , Fenótipo
7.
Cell Death Dis ; 9(2): 240, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29445082

RESUMO

Pyruvate kinase M2 (PKM2) is a glycolytic enzyme that is expressed in cancer cells. Its role in tumor metabolism is not definitively established, but investigators have suggested that regulation of PKM2 activity can cause accumulation of glycolytic intermediates and increase flux through the pentose phosphate pathway. Recent evidence suggests that PKM2 also may have non-metabolic functions, including as a transcriptional co-activator in gene regulation. We reported previously that PKM2 is abundant in photoreceptor cells in mouse retinas. In the present study, we conditionally deleted PKM2 (rod-cre PKM2-KO) in rod photoreceptors and found that the absence of PKM2 causes increased expression of PKM1 in rods. Analysis of metabolic flux from U-13C glucose shows that rod-cre PKM2-KO retinas accumulate glycolytic intermediates, consistent with an overall reduction in the amount of pyruvate kinase activity. Rod-cre PKM2-KO mice also have an increased NADPH availability could favor lipid synthesis, but we found no difference in phospholipid synthesis between rod-cre PKM2 KO and PKM2-positive controls. As rod-cre PKM2-KO mice aged, we observed a significant loss of rod function, reduced thickness of the photoreceptor outer segment layer, and reduced expression of photoreceptor proteins, including PDE6ß. The rod-cre PKM2-KO retinas showed greater TUNEL staining than wild-type retinas, indicating a slow retinal degeneration. In vitro analysis showed that PKM2 can regulate transcriptional activity from the PDE6ß promoter in vitro. Our findings indicate that both the metabolic and transcriptional regulatory functions of PKM2 may contribute to photoreceptor structure, function, and viability.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/genética , Piruvato Quinase/genética , Células Fotorreceptoras Retinianas Cones/metabolismo , Degeneração Retiniana/genética , Transcrição Gênica , Animais , Apoptose/genética , Isótopos de Carbono , Membrana Celular/química , Membrana Celular/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/metabolismo , Modelos Animais de Doenças , Eletrorretinografia , Regulação da Expressão Gênica , Humanos , Marcação In Situ das Extremidades Cortadas , Integrases/genética , Integrases/metabolismo , Camundongos , Camundongos Knockout , NADP/metabolismo , Fosfolipídeos/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Piruvato Quinase/deficiência , Células Fotorreceptoras Retinianas Cones/patologia , Degeneração Retiniana/diagnóstico por imagem , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , Transdução de Sinais , Coloração e Rotulagem/métodos , Tomografia de Coerência Óptica , Triglicerídeos/metabolismo
8.
Proc Natl Acad Sci U S A ; 113(51): 14710-14715, 2016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-27911769

RESUMO

The retinal pigment epithelium (RPE) is a monolayer of pigmented cells that requires an active metabolism to maintain outer retinal homeostasis and compensate for oxidative stress. Using 13C metabolic flux analysis in human RPE cells, we found that RPE has an exceptionally high capacity for reductive carboxylation, a metabolic pathway that has recently garnered significant interest because of its role in cancer cell survival. The capacity for reductive carboxylation in RPE exceeds that of all other cells tested, including retina, neural tissue, glial cells, and a cancer cell line. Loss of reductive carboxylation disrupts redox balance and increases RPE sensitivity to oxidative damage, suggesting that deficiencies of reductive carboxylation may contribute to RPE cell death. Supporting reductive carboxylation by supplementation with an NAD+ precursor or its substrate α-ketoglutarate or treatment with a poly(ADP ribose) polymerase inhibitor protects reductive carboxylation and RPE viability from excessive oxidative stress. The ability of these treatments to rescue RPE could be the basis for an effective strategy to treat blinding diseases caused by RPE dysfunction.


Assuntos
Carbono/química , Olho/embriologia , Ácidos Cetoglutáricos/química , Degeneração Macular/metabolismo , Epitélio Pigmentado da Retina/embriologia , Epitélio Pigmentado da Retina/metabolismo , Idoso de 80 Anos ou mais , Animais , Diferenciação Celular , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Ácidos Graxos/química , Feminino , Células HeLa , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Isocitrato Desidrogenase/metabolismo , Degeneração Macular/patologia , Camundongos , NAD/química , Neoplasias/metabolismo , Neoplasias/patologia , Oxirredução , Estresse Oxidativo , Oxigênio/química , Poli(ADP-Ribose) Polimerases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA