Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Reprod Immunol ; 88(1): e13564, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35535415

RESUMO

PROBLEM: Pregnancy complications and adverse birth outcomes are in part fueled by the rise in obesity and its associated co-morbidities in western societies. Fetal healthy development and placental function are disturbed by an obese, inflammatory environment associated with cytokines, such as interleukin-6, causing inadequate supply of nutrients to the fetus and perinatal programming with severe health consequences. METHOD OF STUDY: Mice received high fat diet (HFD) before and during gestation to induce obesity. We performed an IL-6 receptor antibody (MR16-1) treatment in pregnant obese mice at embryonic days E0.5, E7.5 and E14.5 to investigate whether this could ameliorate HFD-induced and obesity-associated placental dysfunction, evaluated by stereology and western blot, and improve offspring outcome at E15.5 in obese dams. RESULTS: We observed fewer fetuses below the 10th percentile and placental vascularization was less aggravated following MR16-1 treatment of obese dams, showing slight improvements in labyrinth zone (Lz) vascularization. However, placental dysfunction and fetal growth restriction were still apparent in MR16-1 dams compared to lean control dams. Molecular analysis showed significantly elevated IL-6 level in placentas of MR16-1 treated dams. CONCLUSION: Treatment with MR16-1 blocks IL-6 signaling in the placenta, but has only limited effects on preventing HFD-associated placental dysfunction and offspring outcomes in mice, suggesting further mechanisms in the deterioration of placental vascularization and fetal nutrient supply as a consequence of maternal obesity.


Assuntos
Dieta Hiperlipídica , Complicações na Gravidez , Animais , Feminino , Retardo do Crescimento Fetal/etiologia , Interleucina-6 , Camundongos , Camundongos Obesos , Obesidade/complicações , Placenta , Gravidez , Receptores de Interleucina-6
2.
Endocr Connect ; 11(3)2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35148275

RESUMO

Objective: Asprosin is a recently discovered hormone associated with obesity and diabetes mellitus. Little is known about asprosin's role during pregnancy, but a contribution of asprosin to pregnancy complications resulting from maternal obesity and gestational diabetes mellitus (GDM) is conceivable. We assessed the potential effects of obesity, GDM and other clinical parameters on maternal and fetal umbilical plasma asprosin concentrations and placental asprosin expression. Design: The Cologne-Placenta Cohort Study comprises 247 female patients, from whom blood and placentas were collected at the University Hospital Cologne. Methods: We studied the maternal and fetal umbilical plasma and placentas of pregnant women with an elective, primary section. Sandwich ELISA measurements of maternal and fetal umbilical plasma and immunohistochemical stainings of placental tissue were performed to determine the asprosin levels. Also, the relation between asprosin levels and clinical blood parameters was studied. Results: There was a strong correlation between the maternal and fetal plasma asprosin levels and both increased with GDM in normal-weight and obese women. Asprosin immunoreactivity was measured in cultivated placental cells and placental tissue. BMI and GDM were not but pre-pregnancy exercise and smoking were correlated with maternal and/or fetal asprosin levels. Placental asprosin levels were associated with maternal but not with fetal plasma asprosin levels and with BMI but not with GDM. Placental asprosin was related to maternal insulin levels and increased upon insulin treatment in GDM patients. Conclusions: Asprosin could potentially act as a biomarker and contribute to the clinical manifestation of pregnancy complications associated with maternal obesity.

3.
Sci Rep ; 12(1): 1340, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35079041

RESUMO

The C-terminal pro-fibrillin-1 propeptide asprosin is described as white adipose tissue derived hormone that stimulates rapid hepatic glucose release and activates hunger-promoting hypothalamic neurons. Numerous studies proposed correlations of asprosin levels with clinical parameters. However, the enormous variability of reported serum and plasma asprosin levels illustrates the need for sensitive and reliable detection methods in clinical samples. Here we report on newly developed biochemical methods for asprosin concentration and detection in several body fluids including serum, plasma, saliva, breast milk, and urine. Since we found that glycosylation impacts human asprosin detection we analyzed its glycosylation profile. Employing a new sandwich ELISA revealed that serum and saliva asprosin correlate strongly, depend on biological sex, and feeding status. To investigate the contribution of connective tissue-derived asprosin to serum levels we screened two cohorts with described cartilage turnover. Serum asprosin correlated with COMP, a marker for cartilage degradation upon running exercise and after total hip replacement surgery. This together with our finding that asprosin is produced by primary human chondrocytes and expressed in human cartilage suggests a contribution of cartilage to serum asprosin. Furthermore, we determined asprosin levels in breast milk, and urine, for the first time, and propose saliva asprosin as an accessible clinical marker for future studies.


Assuntos
Fibrilina-1 , Saliva/metabolismo , Adulto , Biomarcadores/sangue , Estudos de Coortes , Feminino , Fibrilina-1/sangue , Fibrilina-1/metabolismo , Células HEK293 , Humanos , Masculino , Adulto Jovem
4.
Nutrients ; 13(11)2021 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-34835991

RESUMO

Maternal obesity greatly affects next generations, elevating obesity risk in the offspring through perinatal programming and flawed maternal and newborn nutrition. The exact underlying mechanisms are poorly understood. Interleukin-6 (IL-6) mediates its effects through a membrane-bound receptor or by trans-signaling (tS), which can be inhibited by the soluble form of the co-receptor gp130 (sgp130). As IL-6 tS mediates western-style diet (WSD) effects via chronic low-grade inflammation (LGI) and LGI is an important mediator in brain-adipose tissue communication, this study aims at determining the effects of maternal obesity in a transgenic mouse model of brain-restricted IL-6tS inhibition (GFAPsgp130) on offspring's short- and long-term body composition and epigonadal white adipose tissue (egWAT) metabolism. Female wild type (WT) or transgenic mice were fed either standard diet (SD) or WSD pregestationally, during gestation, and lactation. Male offspring received SD from postnatal day (P)21 to P56 and were metabolically challenged with WSD from P56 to P120. At P21, offspring from WT and transgenic dams that were fed WSD displayed increased body weight and egWAT mass, while glucose tolerance testing showed the strongest impairment in GFAPsgp130WSD offspring. Simultaneously, egWAT proteome reveals a characteristic egWAT expression pattern in offspring as a result of maternal conditions. IL-6tS inhibition in transgenic mice was in tendency associated with lower body weight in dams on SD and their respective offspring but blunted by the WSD. In conclusion, maternal nutrition affects offspring's body weight and egWAT metabolism predominantly independent of IL-6tS inhibition, emphasizing the importance of maternal and newborn nutrition for long-term offspring health.


Assuntos
Encéfalo/metabolismo , Interleucina-6/metabolismo , Obesidade Materna/metabolismo , Transdução de Sinais , Adipocinas/genética , Adipocinas/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Biomarcadores/sangue , Peso Corporal , Dieta , Dieta Ocidental , Feminino , Teste de Tolerância a Glucose , Insulina/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Obesidade Materna/sangue , Fenótipo , Gravidez , Proteoma/metabolismo , Proteômica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
5.
Nutrients ; 12(2)2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-31979004

RESUMO

Obesity during pregnancy is a known health risk for mother and child. Since obesity is associated with increased inflammatory markers, our objectives were to determine interleukin-6 (IL-6) levels in obese mice and to examine the effect of IL-6 on placental endothelial cells. Placentas, blood, and adipose tissue of C57BL/6N mice, kept on high fat diet before and during pregnancy, were harvested at E15.5. Serum IL-6 levels were determined and endothelial cell markers and IL-6 expression were measured by qRT-PCR and western blot. Immunostaining was used to determine surface and length densities of fetal capillary profiles and placental endothelial cell homeostasis. Human placental vein endothelial cells were cultured and subjected to proliferation, apoptosis, senescence, and tube formation assays after stimulation with hyperIL-6. Placental endothelial cell markers were downregulated and the percentage of senescent endothelial cells was higher in the placental exchange zone of obese dams and placental vascularization was strongly reduced. Additionally, maternal IL-6 serum levels and IL-6 protein levels in adipose tissue were increased. Stimulation with hyperIL-6 provoked a dose dependent increase of senescence in cultured endothelial cells without any effects on proliferation or apoptosis. Diet-induced maternal obesity led to an IUGR phenotype accompanied by increased maternal IL-6 serum levels. In the placenta of obese dams, this may result in a disturbed endothelial cell homeostasis and impaired fetal vasculature. Cell culture experiments confirmed that IL-6 is capable of inducing endothelial cell senescence.


Assuntos
Células Endoteliais/metabolismo , Interleucina-6/metabolismo , Obesidade Materna/metabolismo , Placenta/metabolismo , Tecido Adiposo/metabolismo , Animais , Técnicas de Cultura de Células , Senescência Celular , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Feminino , Feto/irrigação sanguínea , Homeostase , Camundongos , Camundongos Endogâmicos C57BL , Obesidade Materna/etiologia , Gravidez
6.
Endocrinology ; 158(10): 3399-3415, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28938412

RESUMO

Childhood obesity is associated with renal diseases. Maternal obesity is a risk factor linked to increased adipocytokines and metabolic disorders in the offspring. Therefore, we studied the impact of maternal obesity on renal-intrinsic insulin and adipocytokine signaling and on renal function and structure. To induce maternal obesity, female mice were fed a high-fat diet (HFD) or a standard diet (SD; control group) prior to mating, during gestation, and throughout lactation. A third group of dams was fed HFD only during lactation (HFD-Lac). After weaning at postnatal day (P)21, offspring of all groups received SD. Clinically, HFD offspring were overweight and insulin resistant at P21. Although no metabolic changes were detected at P70, renal sodium excretion was reduced by 40%, and renal matrix deposition increased in the HFD group. Mechanistically, two stages were differentiated. In the early stage (P21), compared with the control group, HFD showed threefold increased white adipose tissue, impaired glucose tolerance, hyperleptinemia, and hyperinsulinemia. Renal leptin/Stat3-signaling was activated. In contrast, the Akt/ AMPKα cascade and Krüppel-like factor 15 expression were decreased. In the late stage (P70), although no metabolic differences were detected in HFD when compared with the control group, leptin/Stat3-signaling was reduced, and Akt/AMPKα was activated in the kidneys. This effect was linked to an increase of proliferative (cyclinD1/D2) and profibrotic (ctgf/collagen IIIα1) markers, similar to leptin-deficient mice. HFD-Lac mice exhibited metabolic changes at P21 similar to HFD, but no other persistent changes. This study shows a link between maternal obesity and metabolic programming of renal structure and function and intrinsic-renal Stat3/Akt/AMPKα signaling in the offspring.


Assuntos
Intolerância à Glucose/metabolismo , Insulina/metabolismo , Rim/metabolismo , Leptina/metabolismo , Obesidade/metabolismo , Sobrepeso/metabolismo , Complicações na Gravidez/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Adipocinas , Tecido Adiposo Branco , Animais , Colágeno Tipo III/metabolismo , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Ciclina D1/metabolismo , Ciclina D2/metabolismo , Proteínas de Ligação a DNA/metabolismo , Dieta Hiperlipídica , Feminino , Resistência à Insulina , Fatores de Transcrição Kruppel-Like , Masculino , Camundongos , Gravidez , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Sódio/urina , Fatores de Transcrição/metabolismo
7.
Curr Opin Pediatr ; 28(2): 188-94, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26963856

RESUMO

PURPOSE OF REVIEW: Perinatal programming of renal function reflects the epigenetic alteration of genetically determined development by environmental factors. These include intrauterine malnutrition, pre and postnatal overnutrition, glucocorticoids, and certain toxins such as smoking. This review aims to summarize the most important findings. RECENT FINDINGS: Human studies may show an increased susceptibility toward the general prevalence of renal failure in already small for gestational age children and adolescents. In particular, glomerular diseases present with a more severe clinical course. Partially related, partially independently, arterial hypertension is found in this at-risk group. The findings can mostly be confirmed in animal models. Both intrauterine nutrient deprived and overfed rodents show a tendency toward developing glomerulosclerosis and other renal disorders. Animal studies attempt to imitate clinical conditions, however, there are difficulties in transferring the findings to the human setting. The reduction of nephron number, especially in intrauterine growth-restricted humans and animals, is one mechanism of perinatal programming in the kidneys. In addition, vascular and endocrine alterations are prevalent. The molecular changes behind these mechanisms include epigenetic changes such as DNA-methylation, microRNAs, and histone modifications. SUMMARY: Future research will have to establish clinical studies with clear and well defined inclusion criteria which also reflect prenatal life. The use of transgenic animal models might help to obtain a deeper insight into the underlying mechanisms.


Assuntos
Nefropatias/embriologia , Rim/embriologia , Pesquisa Biomédica/tendências , Desenvolvimento Embrionário/genética , Desenvolvimento Embrionário/fisiologia , Epigênese Genética , Feminino , Retardo do Crescimento Fetal/genética , Retardo do Crescimento Fetal/fisiopatologia , Humanos , Rim/fisiologia , Nefropatias/genética , Gravidez , Efeitos Tardios da Exposição Pré-Natal/genética
8.
Med Sci Sports Exerc ; 48(5): 829-38, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26694850

RESUMO

PURPOSE: Maternal obesity is known to predispose the offspring to impaired glucose metabolism and obesity associated with low-grade inflammation and hypothalamic dysfunction. Because preventive approaches in this context are missing to date, we aimed to identify molecular mechanisms in the offspring that are affected by maternal exercise during pregnancy. METHODS: Diet-induced obese mouse dams were divided into a sedentary obese (high-fat diet [HFD]) group and an obese intervention (HFD-running intervention [RUN]) group, which performed voluntary wheel running throughout gestation. Male offspring were compared with the offspring of a sedentary lean control group at postnatal day 21. RESULTS: HFD and HFD-RUN offspring showed increased body weight and white adipose tissue mass. Glucose tolerance testing showed mild impairment only in HFD offspring. Serum interleukin-6 (IL-6) levels, hypothalamic and white adipose tissue IL-6 gene expressions, and phosphorylation of signal transducer and activator of transcription 3 in HFD offspring were significantly increased, whereas HFD-RUN was protected against these changes. The altered hypothalamic global gene expression in HFD offspring showed partial normalization in HFD-RUN offspring, especially with respect to IL-6 action. CONCLUSION: Maternal exercise in obese pregnancies effectively reduces IL-6 trans-signaling and might be the underlying mechanism for the amelioration of glucose metabolism at postnatal day 21 independent of body composition.


Assuntos
Interleucina-6/metabolismo , Obesidade/fisiopatologia , Condicionamento Físico Animal , Transdução de Sinais , Tecido Adiposo Branco/metabolismo , Adiposidade , Animais , Peso Corporal , Dieta Hiperlipídica , Feminino , Glucose/metabolismo , Teste de Tolerância a Glucose , Hipotálamo/metabolismo , Insulina/sangue , Interleucina-6/sangue , Leptina/sangue , Masculino , Camundongos , Atividade Motora , Fenótipo , Gravidez , Fator de Transcrição STAT3/metabolismo , Transcriptoma
9.
Reprod Sci ; 22(6): 735-42, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25415335

RESUMO

The soluble fms-like tyrosine kinase 1 (sFlt-1), known to be increased in the serum of preeclamptic patients, is a relevant factor in causing maternal symptoms like hypertension and proteinuria. In this study, we aimed to reveal whether hypoxia is a cause of increased sFlt-1 levels and inflammation markers in vivo and whether these symptoms can be attenuated by interleukin 6 (IL-6) depletion. For this purpose, pregnant wild-type (wt) mice or IL-6(-/-) mice on embryonic day 16 were placed under either normoxic (20.9% oxygen) or hypoxic (6% oxygen) conditions for 6 hours. This led to a rise of sFlt-1 levels in maternal serum, independent of the IL-6 status of the dam. Increased maternal sFlt-1 serum levels were, however, not due to an increase in sFlt-1 messenger RNA levels in the placenta. Moreover, there was no increase in inflammatory markers in neither wt mice nor IL-6(-/-) mice. This suggests that hypoxia alone does not contribute to the induction of an inflammatory placenta. Also, the hypoxia-induced rise in sFlt-1 levels seems not to be mediated by IL-6 in vivo.


Assuntos
Hipóxia/enzimologia , Inflamação/enzimologia , Interleucina-6/deficiência , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/sangue , Animais , Modelos Animais de Doenças , Feminino , Idade Gestacional , Hipóxia/sangue , Hipóxia/genética , Hipóxia/imunologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Inflamação/sangue , Inflamação/genética , Inflamação/imunologia , Interleucina-6/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Placenta/imunologia , Placenta/metabolismo , Gravidez , Regulação para Cima , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética
10.
Cell Metab ; 6(6): 431-45, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18054313

RESUMO

The contribution of different leptin-induced signaling pathways in control of energy homeostasis is only partly understood. Here we show that selective Pten ablation in leptin-sensitive neurons (Pten(DeltaObRb)) results in enhanced Pi3k activation in these cells and reduces adiposity by increasing energy expenditure. White adipose tissue (WAT) of Pten(DeltaObRb) mice shows characteristics of brown adipose tissue (BAT), reflected by increased mitochondrial content and Ucp1 expression resulting from enhanced leptin-stimulated sympathetic nerve activity (SNA) in WAT. In contrast, leptin-deficient ob/ob-Pten(DeltaObRb) mice exhibit unaltered body weight and WAT morphology compared to ob/ob mice, pointing to a pivotal role of endogenous leptin in control of WAT transdifferentiation. Leanness of Pten(DeltaObRb) mice is accompanied by enhanced sensitivity to insulin in skeletal muscle. These data provide direct genetic evidence that leptin-stimulated Pi3k signaling in the CNS regulates energy expenditure via activation of SNA to perigonadal WAT leading to BAT-like differentiation of WAT.


Assuntos
Tecido Adiposo Branco/crescimento & desenvolvimento , Tecido Adiposo Branco/metabolismo , Sistema Nervoso Central/metabolismo , Leptina/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Tecido Adiposo Marrom/crescimento & desenvolvimento , Tecido Adiposo Marrom/metabolismo , Animais , Transdiferenciação Celular , Ativação Enzimática , Glucose/metabolismo , Camundongos , Camundongos Knockout , Camundongos Mutantes , Camundongos Obesos , Camundongos Transgênicos , PTEN Fosfo-Hidrolase/deficiência , PTEN Fosfo-Hidrolase/genética , Transdução de Sinais , Magreza
11.
Cell Metab ; 5(6): 438-49, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17550779

RESUMO

Insulin action in the central nervous system regulates energy homeostasis and glucose metabolism. To define the insulin-responsive neurons that mediate these effects, we generated mice with selective inactivation of the insulin receptor (IR) in either pro-opiomelanocortin (POMC)- or agouti-related peptide (AgRP)-expressing neurons of the arcuate nucleus of the hypothalamus. While neither POMC- nor AgRP-restricted IR knockout mice exhibited altered energy homeostasis, insulin failed to normally suppress hepatic glucose production during euglycemic-hyperinsulinemic clamps in AgRP-IR knockout (IR(DeltaAgRP)) mice. These mice also exhibited reduced insulin-stimulated hepatic interleukin-6 expression and increased hepatic expression of glucose-6-phosphatase. These results directly demonstrate that insulin action in POMC and AgRP cells is not required for steady-state regulation of food intake and body weight. However, insulin action specifically in AgRP-expressing neurons does play a critical role in controlling hepatic glucose production and may provide a target for the treatment of insulin resistance in type 2 diabetes.


Assuntos
Proteína Relacionada com Agouti/metabolismo , Glucose/metabolismo , Insulina/farmacologia , Fígado/metabolismo , Neurônios/efeitos dos fármacos , Animais , Western Blotting , Peso Corporal , Eletrofisiologia , Feminino , Teste de Tolerância a Glucose , Glucose-6-Fosfatase/metabolismo , Homeostase , Hiperinsulinismo/metabolismo , Hipotálamo/metabolismo , Técnicas Imunoenzimáticas , Integrases/metabolismo , Interleucina-6/metabolismo , Fígado/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Pró-Opiomelanocortina/metabolismo , Receptor de Insulina/genética
12.
J Clin Invest ; 116(7): 1886-901, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16794735

RESUMO

Leptin and insulin have been identified as fuel sensors acting in part through their hypothalamic receptors to inhibit food intake and stimulate energy expenditure. As their intracellular signaling converges at the PI3K pathway, we directly addressed the role of phosphatidylinositol3,4,5-trisphosphate-mediated (PIP3-mediated) signals in hypothalamic proopiomelanocortin (POMC) neurons by inactivating the gene for the PIP3 phosphatase Pten specifically in this cell type. Here we show that POMC-specific disruption of Pten resulted in hyperphagia and sexually dimorphic diet-sensitive obesity. Although leptin potently stimulated Stat3 phosphorylation in POMC neurons of POMC cell-restricted Pten knockout (PPKO) mice, it failed to significantly inhibit food intake in vivo. POMC neurons of PPKO mice showed a marked hyperpolarization and a reduction in basal firing rate due to increased ATP-sensitive potassium (KATP) channel activity. Leptin was not able to elicit electrical activity in PPKO POMC neurons, but application of the PI3K inhibitor LY294002 and the KATP blocker tolbutamide restored electrical activity and leptin-evoked firing of POMC neurons in these mice. Moreover, icv administration of tolbutamide abolished hyperphagia in PPKO mice. These data indicate that PIP3-mediated signals are critical regulators of the melanocortin system via modulation of KATP channels.


Assuntos
Neurônios/metabolismo , Obesidade , PTEN Fosfo-Hidrolase/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Canais de Potássio/metabolismo , Pró-Opiomelanocortina/metabolismo , Sistemas do Segundo Mensageiro/fisiologia , Animais , Cromonas/metabolismo , Dieta , Ingestão de Alimentos/efeitos dos fármacos , Feminino , Hipoglicemiantes/farmacologia , Hipotálamo/citologia , Hipotálamo/metabolismo , Insulina/metabolismo , Leptina/metabolismo , Masculino , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Camundongos Knockout , Morfolinas/metabolismo , Neurônios/citologia , Neurônios/efeitos dos fármacos , PTEN Fosfo-Hidrolase/genética , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Tolbutamida/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA