Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Acta Physiol (Oxf) ; 240(5): e14140, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38546351

RESUMO

AIM: Inflammation and calcification are hallmarks in the development of aortic valve stenosis (AVS). Ceramides mediate inflammation and calcification in the vascular tissue. The highly abundant d18:1,16:0 ceramide (C16) has been linked to increased cardiovascular mortality and obesity. In this study, we investigate the role of ceramide synthase 5 (CerS5), a critical enzyme for C16 ceramide synthesis, in the development of AVS, particularly in conjunction with a high-fat/high-cholesterol diet (Western diet, WD). METHODS: We used wild-type (WT) and CerS5-/- mice on WD or normal chow in a wire injury model. We measured the peak velocity to determine AVS development and performed histological analysis of the aortic valve area, immune cell infiltration (CD68 staining), and calcification (von Kossa). In vitro experiments involved measuring the calcification of human aortic valvular interstitial cells (VICs) and evaluating cytokine release from THP-1 cells, a human leukemia monocytic-like cell line, following CerS5 knockdown. RESULTS: CerS5-/- mice showed a reduced peak velocity compared to WT only in the experiment with WD. Likewise, we observed reduced immune cell infiltration and calcification in the aortic valve of CerS5-/- mice, but only on WD. In vitro, calcification was reduced after knockdown of CerS5 in VICs, while THP-1 cells exhibited a decreased inflammatory response following CerS5 knockdown. CONCLUSION: We conclude that CerS5 is an important mediator for the development of AVS in mice on WD and regulates critical pathophysiological hallmarks of AVS formation. CerS5 is therefore an interesting target for pharmacological therapy and merits further investigation.

3.
Basic Res Cardiol ; 118(1): 6, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36723728

RESUMO

Aortic valve stenosis (AS) development is driven by distinct molecular and cellular mechanisms which include inflammatory pathways. Toll-like-receptor-3 (TLR3) is a lysosomal pattern-recognition receptor that binds double-stranded RNA and promotes pro-inflammatory cellular responses. In recent years, TLR3 has emerged as a major regulator of vascular inflammation. The exact role of TLR3 in the development of AS has not been investigated. Isolated human valvular interstitial cells (VICs) were stimulated with the TLR3-agonist polyIC and the resulting pro-inflammatory and pro-osteogenic response measured. Severe AS was induced in wildtype- and TLR3-/- mice via mechanical injury of the aortic valve with a coronary springwire. TLR3 activation was achieved by polyIC injection every 24 h after wire injury, while TLR3 inhibition was realized using Compound 4a (C4a) every 48 h after surgery. Endothelial mesenchymal transition (EndoMT) of human valvular endothelial cells (VECs) was assessed after polyIC stimulation. Stimulation of human VICs with polyIC promoted a strong inflammatory and pro-osteogenic reaction. Similarly, injection of polyIC marginally increased AS development in mice after wire injury. AS induction was significantly decreased in TLR3-/- mice, confirming the role of endogenous TLR3 ligands in AS pathology. Pharmacological inhibition of TLR3 with C4a not only prevented the upregulation of inflammatory cytokines and osteogenic markers in VICs, and EndoMT in VECs, but also significantly abolished the development of AS in vivo. Endogenous TLR3 activation significantly contributes to AS development in mice. Pharmacological inhibition of TLR3 with C4a prevented AS formation. Therefore, targeting TLR3 may be a viable treatment option.


Assuntos
Estenose da Valva Aórtica , Calcinose , Humanos , Camundongos , Animais , Estenose da Valva Aórtica/genética , Valva Aórtica/patologia , Células Endoteliais/metabolismo , Receptor 3 Toll-Like/metabolismo , Células Cultivadas , Calcinose/genética , Calcinose/metabolismo , Calcinose/patologia
4.
Arterioscler Thromb Vasc Biol ; 42(10): 1220-1228, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36004640

RESUMO

Growing evidence suggests that ceramides play an important role in the development of atherosclerotic and valvular heart disease. Ceramides are biologically active sphingolipids that are produced by a complex network of enzymes. Lowering cellular and tissue levels of ceramide by inhibiting the ceramide-producing enzymes counteracts atherosclerotic and valvular heart disease development in animal models. In vascular tissues, ceramides are produced in response to hyperglycemia and TNF (tumor necrosis factor)-α signaling and are involved in NO-signaling and inflammation. In humans, elevated blood ceramide levels are associated with cardiovascular events. Furthermore, important cardiovascular risk factors, such as obesity and diabetes, have been linked to ceramide accumulation. This review summarizes the basic mechanisms of how ceramides drive cardiovascular disease locally and links these findings to the intriguing results of human studies on ceramides as biomarkers for cardiovascular events. Moreover, we discuss the current state of interventions to therapeutically influence vascular ceramide metabolism, both locally and systemically.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Doenças das Valvas Cardíacas , Animais , Aterosclerose/metabolismo , Biomarcadores , Ceramidas , Humanos , Esfingolipídeos/metabolismo , Fator de Necrose Tumoral alfa
5.
Circulation ; 146(24): 1836-1854, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-35862223

RESUMO

BACKGROUND: Transcatheter aortic valve replacement (TAVR) is a well-established treatment option for high- and intermediate-risk patients with severe symptomatic aortic valve stenosis. A majority of patients exhibit improvements in left ventricular ejection fraction (LVEF) after TAVR in response to TAVR-associated afterload reduction. However, a specific role for circulating microRNAs (miRNAs) in the improvement of cardiac function for patients after TAVR has not yet been investigated. Here, we profiled the differential expression of miRNAs in circulating extracellular vesicles (EVs) in patients after TAVR and, in particular, the novel role of circulating miR-122-5p in cardiomyocytes. METHODS: Circulating EV-associated miRNAs were investigated by use of an unbiased Taqman-based human miRNA array. Several EV miRNAs (miR-122-5p, miR-26a, miR-192, miR-483-5p, miR-720, miR-885-5p, and miR-1274) were significantly deregulated in patients with aortic valve stenosis at day 7 after TAVR compared with the preprocedural levels in patients without LVEF improvement. The higher levels of miR-122-5p were negatively correlated with LVEF improvement at both day 7 (r=-0.264 and P=0.015) and 6 months (r=-0.328 and P=0.0018) after TAVR. RESULTS: Using of patient-derived samples and a murine aortic valve stenosis model, we observed that the expression of miR-122-5p correlates negatively with cardiac function, which is associated with LVEF. Mice with graded wire injury-induced aortic valve stenosis demonstrated a higher level of miR-122-5p, which was related to cardiomyocyte dysfunction. Murine ex vivo experiments revealed that miR-122-5p is highly enriched in endothelial cells compared with cardiomyocytes. Coculture experiments, copy-number analysis, and fluorescence microscopy with Cy3-labeled miR-122-5p demonstrated that miR-122-5p can be shuttled through large EVs from endothelial cells into cardiomyocytes. Gain- and loss-of-function experiments suggested that EV-mediated shuttling of miR-122-5p increases the level of miR-122-5p in recipient cardiomyocytes. Mechanistically, mass spectrometry, miRNA pulldown, electrophoretic mobility shift assay, and RNA immunoprecipitation experiments confirmed that miR-122-5p interacts with the RNA-binding protein hnRNPU (heterogeneous nuclear ribonucleoprotein U) in a sequence-specific manner to encapsulate miR-122-5p into large EVs. On shuttling, miR-122-5p reduces the expression of the antiapoptotic gene BCL2 by binding to its 3' untranslated region to inhibit its translation, thereby decreasing the viability of target cardiomyocytes. CONCLUSIONS: Increased levels of circulating proapoptotic EV-incorporated miR-122-5p are associated with reduced LVEF after TAVR. EV shuttling of miR-122-5p regulates the viability and apoptosis of cardiomyocytes in a BCL2-dependent manner.


Assuntos
Estenose da Valva Aórtica , MicroRNA Circulante , Vesículas Extracelulares , MicroRNAs , Substituição da Valva Aórtica Transcateter , Humanos , Camundongos , Animais , Substituição da Valva Aórtica Transcateter/métodos , Função Ventricular Esquerda/fisiologia , Volume Sistólico/fisiologia , Células Endoteliais , Estenose da Valva Aórtica/cirurgia , MicroRNAs/genética , Proteínas Proto-Oncogênicas c-bcl-2 , Valva Aórtica/cirurgia , Resultado do Tratamento
6.
Front Cardiovasc Med ; 7: 582482, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33263007

RESUMO

Background: Atherosclerosis has been shown to result from chronic inflammation caused by constitutive activation of the pattern recognition receptors (PRR), which are principle effectors of the innate immune system. PRR are present in the endosome or on the cellular membrane and can sense the aberrant release of nucleic acids, which is often a sign of acute or chronic cellular damage. Absent in melanoma 2 (AIM2) is a PRR that is expressed by vascular cells and specializes in detecting cytoplasmic double-stranded DNA (dsDNA). Activation of AIM2 leads eventually to activation of the inflammasome, but the role of AIM2 in vascular disease and atherosclerosis has not been well-studied. Therefore, in this study we took advantage of acute and chronic models of vascular injury to determine the biological role of AIM2 in atherogenesis. Methods and Results: We were able to induce significant release of proinflammatory cytokines in mice through the intravenous injection of a synthetic ligand for AIM2, double-stranded poly dA:dT. This cytokine release was shown to impair reendothelialization of the carotid artery and increase the number of circulating endothelial microparticles (EMP) after acute denudation, compared to treatment with vehicle. We saw an increase in the production of reactive oxygen species in the aorta, the number of circulating EMP, and, most interestingly, atherosclerotic plaque formation in apolipoprotein E-deficient (ApoE-/-) mice when they received continual subcutaneous poly dA:dT, in contrast to vehicle-treated animals. Finally, treatment with poly dA:dT did not impair vascular reendothelialization in AIM2-/- mice compared to vehicle controls in the carotid artery injury model. Conclusion: Overall, our data suggest that AIM2, as a known regulator of the inflammasome, is an active participant in atherogenesis, and highlight the importance of fully understanding the pathological mechanisms involved. It seems to be worth of further exploration as a therapeutic target, and future studies focusing on the effects of AIM2 activation as well as its pharmacological inhibition may reveal promising new therapeutic concepts for the treatment of atherosclerosis.

7.
Cells ; 9(10)2020 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-32987857

RESUMO

Calcific aortic valve disease (CAVD) is the most prevalent valvular heart disease in the developed world, yet no pharmacological therapy exists. Here, we hypothesize that the integration of multiple omic data represents an approach towards unveiling novel molecular networks in CAVD. Databases were searched for CAVD omic studies. Differentially expressed molecules from calcified and control samples were retrieved, identifying 32 micro RNAs (miRNA), 596 mRNAs and 80 proteins. Over-representation pathway analysis revealed platelet degranulation and complement/coagulation cascade as dysregulated pathways. Multi-omics integration of overlapping proteome/transcriptome molecules, with the miRNAs, identified a CAVD protein-protein interaction network containing seven seed genes (apolipoprotein A1 (APOA1), hemoglobin subunit ß (HBB), transferrin (TF), α-2-macroglobulin (A2M), transforming growth factor ß-induced protein (TGFBI), serpin family A member 1 (SERPINA1), lipopolysaccharide binding protein (LBP), inter-α-trypsin inhibitor heavy chain 3 (ITIH3) and immunoglobulin κ constant (IGKC)), four input miRNAs (miR-335-5p, miR-3663-3p, miR-21-5p, miR-93-5p) and two connector genes (amyloid beta precursor protein (APP) and transthyretin (TTR)). In a metabolite-gene-disease network, Alzheimer's disease exhibited the highest degree of betweenness. To further strengthen the associations based on the multi-omics approach, we validated the presence of APP and TTR in calcified valves from CAVD patients by immunohistochemistry. Our study suggests a novel molecular CAVD network potentially linked to the formation of amyloid-like structures. Further investigations on the associated mechanisms and therapeutic potential of targeting amyloid-like deposits in CAVD may offer significant health benefits.


Assuntos
Amiloide/metabolismo , Estenose da Valva Aórtica/genética , Valva Aórtica/patologia , Calcinose/genética , Genômica , Idoso , Benzotiazóis/metabolismo , Feminino , Redes Reguladoras de Genes , Humanos , Masculino , Metaboloma/genética , Pessoa de Meia-Idade , Pré-Albumina/metabolismo , Transdução de Sinais
8.
Antioxid Redox Signal ; 33(9): 621-644, 2020 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-32408755

RESUMO

Significance: Cardiovascular disease (CVD) remains the major cause of morbidity and mortality worldwide. Accumulating evidence indicates that atherosclerosis and its sequelae, coronary artery disease, contribute to the majority of cardiovascular deaths. Atherosclerosis is a chronic inflammatory disease of the arteries in which atherosclerotic plaques form within the vessel wall. Epidemiological studies have identified various risk factors for atherosclerosis, such as diabetes, hyperlipidemia, smoking, genetic predisposition, and sedentary lifestyle. Recent Advances: Through the advancement of genetic manipulation techniques and their use in cardiovascular biology, it was shown that small RNAs, especially microRNAs (miRNAs), are dynamic regulators of disease pathogenesis. They are considered to be central during the regulation of gene expression through numerous mechanisms and provide a means to develop biomarkers and therapeutic tools for the diagnosis and therapy of atherosclerosis. Circulating miRNAs encapsulated within membrane-surrounded vesicles, which originate from diverse subcellular compartments, are now emerging as novel regulators of intercellular communication. The miRNAs, in both freely circulating and vesicle-bound forms, represent a valuable tool for diagnosing and monitoring CVD, recently termed as "liquid biopsy." Critical Issues: However, despite the recent advancements in miRNA-based diagnostics and therapeutics, understanding how miRNAs can regulate atherosclerosis is still crucial to achieving an effective intervention and reducing the disease burden. Future Directions: We provide a landscape of the current developmental progression of RNA therapeutics as a holistic approach for treating CVD in different animal models and clinical trials. Future interrogations are warranted for the development of miRNA-based therapeutics to overcome challenges for the treatment of the disease.


Assuntos
Aterosclerose/etiologia , Biomarcadores , Regulação da Expressão Gênica , MicroRNAs/genética , Animais , Aterosclerose/diagnóstico , Aterosclerose/terapia , Gerenciamento Clínico , Suscetibilidade a Doenças , Terapia Genética , Humanos , Biópsia Líquida/métodos , Técnicas de Diagnóstico Molecular , Fatores de Risco
9.
Circ Res ; 120(10): 1649-1657, 2017 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-28495995

RESUMO

Extracellular vesicles originate from diverse subcellular compartments and are released in the extracellular space. By transferring their cargoes into target cells and tissues, they now emerge as novel regulators of intercellular communication between adjacent and remote cells. Because vesicle composition and biological content are specific signatures of cellular activation and injury, their potential as diagnostic and prognostic biomarkers has raised significant interest in cardiovascular diseases. Characterization of circulating vesicles- or nonvesicles-bound nucleic acids represents a valuable tool for diagnosing and monitoring cardiovascular diseases, recently referred to as a liquid biopsy. Circulating extracellular vesicles offer a noninvasive and almost continuous access to circulating information on the disease state in epidemiological investigations. Finally, genetic engineering and cell-specific application of extracellular vesicles could display a novel therapeutic option for the treatment of cardiovascular diseases. In this review, we summarize the current knowledge about extracellular vesicles as diagnostic and prognostic biomarkers, as well as their potential applications for longitudinal epidemiological studies in cardiovascular diseases.


Assuntos
Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/diagnóstico , Vesículas Extracelulares/metabolismo , Biomarcadores/sangue , Doenças Cardiovasculares/epidemiologia , Espaço Extracelular/metabolismo , Humanos , Prognóstico
10.
J Cell Mol Med ; 19(9): 2202-14, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26081516

RESUMO

Endothelial microparticles (EMP) are released from activated or apoptotic endothelial cells (ECs) and can be taken up by adjacent ECs, but their effect on vascular inflammation after engulfment is largely unknown. We sought to determine the role of EMP in EC inflammation. In vitro, EMP treatment significantly reduced tumour necrosis factor-α-induced endothelial intercellular adhesion molecule (ICAM)-1 expression on mRNA and protein level, whereas there was no effect on vascular cell adhesion molecule-1 expression. Reduced ICAM-1 expression after EMP treatment resulted in diminished monocyte adhesion in vitro. In vivo, systemic treatment of ApoE-/- mice with EMP significantly reduced murine endothelial ICAM-1 expression. To explore the underlying mechanisms, Taqman microRNA array was performed and microRNA (miR)-222 was identified as the strongest regulated miR between EMP and ECs. Following experiments demonstrated that miR-222 was transported into recipient ECs by EMP and functionally regulated expression of its target protein ICAM-1 in vitro and in vivo. After simulating diabetic conditions, EMP derived from glucose-treated ECs contained significantly lower amounts of miR-222 and showed reduced anti-inflammatory capacity in vitro and in vivo. Finally, circulating miR-222 level was diminished in patients with coronary artery disease (CAD) compared to patients without CAD. EMPs promote anti-inflammatory effects in vitro and in vivo by reducing endothelial ICAM-1 expression via the transfer of functional miR-222 into recipient cells. In pathological hyperglycaemic conditions, EMP-mediated miR-222-dependent anti-inflammatory effects are reduced.


Assuntos
Micropartículas Derivadas de Células/metabolismo , Células Endoteliais/metabolismo , Molécula 1 de Adesão Intercelular/genética , MicroRNAs/metabolismo , Idoso , Animais , Anti-Inflamatórios/farmacologia , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Micropartículas Derivadas de Células/efeitos dos fármacos , Doença da Artéria Coronariana/sangue , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/patologia , Regulação para Baixo/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Feminino , Glucose/farmacologia , Humanos , Inflamação/patologia , Molécula 1 de Adesão Intercelular/metabolismo , Masculino , Camundongos Endogâmicos C57BL , MicroRNAs/sangue , MicroRNAs/genética , Pessoa de Meia-Idade , Modelos Biológicos , Monócitos/citologia , Monócitos/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia
11.
PLoS One ; 9(4): e96024, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24770423

RESUMO

AIMS: Endothelial microparticles (EMP) are complex vesicular structures shed from activated or apoptotic endothelial cells. As endurance exercise affects the endothelium, the objective of the study was to examine levels of EMP and angiogenic growth factors following different endurance exercise protocols. METHODS: 12 subjects performed 3 different endurance exercise protocols: 1. High volume training (HVT; 130 min at 55% peak power output (PPO); 2. 4 × 4 min at 95% PPO; 3. 4 × 30 sec all-out. EMPs were quantified using flow cytometry after staining platelet-poor-plasma. Events positive for Annexin-V and CD31, and negative for CD42b, were classified as EMPs. Vascular endothelial growth factor (VEGF), migratory inhibiting factor (MIF) and hepatocyte growth factor (HGF) were determined by ELISA technique. For all these measurements venous blood samples were taken pre, 0', 30', 60' and 180' after each intervention. Furthermore, in vitro experiments were performed to explore the effect of collected sera on target endothelial functions and MP uptake capacities. RESULTS: VEGF and HGF significantly increased after HIT interventions. All three interventions caused a significant decrease in EMP levels post exercise compared to pre values. The sera taken after exercise increased the uptake of EMP in target endothelial cells compared to sera taken under resting conditions, which was shown to be phosphatidylserin-dependent. Increased EMP uptake was associated with an improved protection of target cells against apoptosis. Sera taken prior and after exercise promoted target endothelial cell migration, which was abrogated after inhibition of VEGF. CONCLUSION: Physical exercise leads to decreased EMP levels and promotes a phosphatidylserin-dependent uptake of EMP into target endothelial cells, which is associated with a protection of target cells against apoptosis.


Assuntos
Micropartículas Derivadas de Células/metabolismo , Condicionamento Físico Humano , Fator A de Crescimento do Endotélio Vascular/sangue , Adulto , Anexina A1/fisiologia , Apoptose , Movimento Celular , Proliferação de Células , Células Cultivadas , Vasos Coronários/citologia , Endotélio Vascular/citologia , Endotélio Vascular/fisiologia , Fator de Crescimento de Hepatócito/sangue , Humanos , Oxirredutases Intramoleculares/sangue , Fatores Inibidores da Migração de Macrófagos/sangue , Masculino , Neovascularização Fisiológica , Consumo de Oxigênio , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA