Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Acta Neuropathol ; 147(1): 80, 2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714540

RESUMO

GABAergic interneurons play a critical role in maintaining neural circuit balance, excitation-inhibition regulation, and cognitive function modulation. In tuberous sclerosis complex (TSC), GABAergic neuron dysfunction contributes to disrupted network activity and associated neurological symptoms, assumingly in a cell type-specific manner. This GABAergic centric study focuses on identifying specific interneuron subpopulations within TSC, emphasizing the unique characteristics of medial ganglionic eminence (MGE)- and caudal ganglionic eminence (CGE)-derived interneurons. Using single-nuclei RNA sequencing in TSC patient material, we identify somatostatin-expressing (SST+) interneurons as a unique and immature subpopulation in TSC. The disrupted maturation of SST+ interneurons may undergo an incomplete switch from excitatory to inhibitory GABAergic signaling during development, resulting in reduced inhibitory properties. Notably, this study reveals markers of immaturity specifically in SST+ interneurons, including an abnormal NKCC1/KCC2 ratio, indicating an imbalance in chloride homeostasis crucial for the postsynaptic consequences of GABAergic signaling as well as the downregulation of GABAA receptor subunits, GABRA1, and upregulation of GABRA2. Further exploration of SST+ interneurons revealed altered localization patterns of SST+ interneurons in TSC brain tissue, concentrated in deeper cortical layers, possibly linked to cortical dyslamination. In the epilepsy context, our research underscores the diverse cell type-specific roles of GABAergic interneurons in shaping seizures, advocating for precise therapeutic considerations. Moreover, this study illuminates the potential contribution of SST+ interneurons to TSC pathophysiology, offering insights for targeted therapeutic interventions.


Assuntos
Neurônios GABAérgicos , Interneurônios , Esclerose Tuberosa , Interneurônios/patologia , Interneurônios/metabolismo , Esclerose Tuberosa/patologia , Esclerose Tuberosa/metabolismo , Humanos , Neurônios GABAérgicos/patologia , Neurônios GABAérgicos/metabolismo , Masculino , Feminino , Eminência Mediana/patologia , Eminência Mediana/metabolismo , Somatostatina/metabolismo , Criança , Pré-Escolar , Receptores de GABA-A/metabolismo , Adolescente , Eminência Ganglionar
2.
Neurology ; 102(4): e208007, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38290094

RESUMO

BACKGROUND AND OBJECTIVE: Patients with presumed nonlesional focal epilepsy-based on either MRI or histopathologic findings-have a lower success rate of epilepsy surgery compared with lesional patients. In this study, we aimed to characterize a large group of patients with focal epilepsy who underwent epilepsy surgery despite a normal MRI and had no lesion on histopathology. Determinants of their postoperative seizure outcomes were further studied. METHODS: We designed an observational multicenter cohort study of MRI-negative and histopathology-negative patients who were derived from the European Epilepsy Brain Bank and underwent epilepsy surgery between 2000 and 2012 in 34 epilepsy surgery centers within Europe. We collected data on clinical characteristics, presurgical assessment, including genetic testing, surgery characteristics, postoperative outcome, and treatment regimen. RESULTS: Of the 217 included patients, 40% were seizure-free (Engel I) 2 years after surgery and one-third of patients remained seizure-free after 5 years. Temporal lobe surgery (adjusted odds ratio [AOR]: 2.62; 95% CI 1.19-5.76), shorter epilepsy duration (AOR for duration: 0.94; 95% CI 0.89-0.99), and completely normal histopathologic findings-versus nonspecific reactive gliosis-(AOR: 4.69; 95% CI 1.79-11.27) were significantly associated with favorable seizure outcome at 2 years after surgery. Of patients who underwent invasive monitoring, only 35% reached seizure freedom at 2 years. Patients with parietal lobe resections had lowest seizure freedom rates (12.5%). Among temporal lobe surgery patients, there was a trend toward favorable outcome if hippocampectomy was part of the resection strategy (OR: 2.94; 95% CI 0.98-8.80). Genetic testing was only sporadically performed. DISCUSSION: This study shows that seizure freedom can be reached in 40% of nonlesional patients with both normal MRI and histopathology findings. In particular, nonlesional temporal lobe epilepsy should be regarded as a relatively favorable group, with almost half of patients achieving seizure freedom at 2 years after surgery-even more if the hippocampus is resected-compared with only 1 in 5 nonlesional patients who underwent extratemporal surgery. Patients with an electroclinically identified focus, who are nonlesional, will be a promising group for advanced molecular-genetic analysis of brain tissue specimens to identify new brain somatic epilepsy genes or epilepsy-associated molecular pathways.


Assuntos
Epilepsias Parciais , Epilepsia do Lobo Temporal , Epilepsia , Humanos , Estudos de Coortes , Eletroencefalografia , Epilepsias Parciais/diagnóstico por imagem , Epilepsias Parciais/cirurgia , Epilepsia/diagnóstico por imagem , Epilepsia/cirurgia , Epilepsia do Lobo Temporal/cirurgia , Imageamento por Ressonância Magnética , Estudos Retrospectivos , Convulsões , Resultado do Tratamento
3.
Nat Commun ; 14(1): 7664, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37996417

RESUMO

We present a comprehensive multi-omic analysis of the EPISTOP prospective clinical trial of early intervention with vigabatrin for pre-symptomatic epilepsy treatment in Tuberous Sclerosis Complex (TSC), in which 93 infants with TSC were followed from birth to age 2 years, seeking biomarkers of epilepsy development. Vigabatrin had profound effects on many metabolites, increasing serum deoxycytidine monophosphate (dCMP) levels 52-fold. Most serum proteins and metabolites, and blood RNA species showed significant change with age. Thirty-nine proteins, metabolites, and genes showed significant differences between age-matched control and TSC infants. Six also showed a progressive difference in expression between control, TSC without epilepsy, and TSC with epilepsy groups. A multivariate approach using enrollment samples identified multiple 3-variable predictors of epilepsy, with the best having a positive predictive value of 0.987. This rich dataset will enable further discovery and analysis of developmental effects, and associations with seizure development in TSC.


Assuntos
Epilepsia , Esclerose Tuberosa , Pré-Escolar , Humanos , Lactente , Epilepsia/genética , Multiômica , Estudos Prospectivos , Esclerose Tuberosa/genética , Vigabatrina/uso terapêutico , Recém-Nascido , Ensaios Clínicos como Assunto
4.
Epilepsia Open ; 8(4): 1300-1313, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37501353

RESUMO

OBJECTIVE: The aim of this study was to describe the epilepsy phenotype in a large international cohort of patients with KBG syndrome and to study a possible genotype-phenotype correlation. METHODS: We collected data on patients with ANKRD11 variants by contacting University Medical Centers in the Netherlands, an international network of collaborating clinicians, and study groups who previously published about KBG syndrome. All patients with a likely pathogenic or pathogenic ANKRD11 variant were included in our patient cohort and categorized into an "epilepsy group" or "non-epilepsy group". Additionally, we included previously reported patients with (likely) pathogenic ANKRD11 variants and epilepsy from the literature. RESULTS: We included 75 patients with KBG syndrome of whom 26 had epilepsy. Those with epilepsy more often had moderate to severe intellectual disability (42.3% vs 9.1%, RR 4.6 [95% CI 1.7-13.1]). Seizure onset in patients with KBG syndrome occurred at a median age of 4 years (range 12 months - 20 years), and the majority had generalized onset seizures (57.7%) with tonic-clonic seizures being most common (23.1%). The epilepsy type was mostly classified as generalized (42.9%) or combined generalized and focal (42.9%), not fulfilling the criteria of an electroclinical syndrome diagnosis. Half of the epilepsy patients (50.0%) were seizure free on anti-seizure medication (ASM) for at least 1 year at the time of last assessment, but 26.9% of patients had drug-resistant epilepsy (failure of ≥2 ASM). No genotype-phenotype correlation could be identified for the presence of epilepsy or epilepsy characteristics. SIGNIFICANCE: Epilepsy in KBG syndrome most often presents as a generalized or combined focal and generalized type. No distinctive epilepsy syndrome could be identified. Patients with KBG syndrome and epilepsy had a significantly poorer neurodevelopmental outcome compared with those without epilepsy. Clinicians should consider KBG syndrome as a causal etiology of epilepsy and be aware of the poorer neurodevelopmental outcome in individuals with epilepsy.


Assuntos
Anormalidades Múltiplas , Doenças do Desenvolvimento Ósseo , Epilepsia Generalizada , Deficiência Intelectual , Anormalidades Dentárias , Humanos , Lactente , Anormalidades Múltiplas/etiologia , Anormalidades Múltiplas/genética , Deficiência Intelectual/complicações , Deficiência Intelectual/diagnóstico , Doenças do Desenvolvimento Ósseo/etiologia , Doenças do Desenvolvimento Ósseo/genética , Anormalidades Dentárias/etiologia , Anormalidades Dentárias/genética , Fácies , Proteínas Repressoras/genética , Fatores de Transcrição
5.
Neurology ; 98(12): e1216-e1225, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35101906

RESUMO

BACKGROUND AND OBJECTIVES: Multiple factors have been found to contribute to the high risk of epilepsy in infants with tuberous sclerosis complex (TSC), including evolution of EEG abnormalities, TSC gene variant, and MRI characteristics. The aim of this prospective multicenter study was to identify early MRI biomarkers of epilepsy in infants with TSC aged <6 months and before seizure onset, and associate these MRI biomarkers with neurodevelopmental outcomes at 2 years of age. The study was part of the EPISTOP project. METHODS: We evaluated brain MRIs performed in infants younger than 6 months with TSC. We used harmonized MRI protocols across centers and children were monitored closely with neuropsychological evaluation and serial video EEG. MRI characteristics, defined as tubers, radial migration lines, white matter abnormalities, cysts, calcifications, subependymal nodules (SEN), and subependymal giant cell astrocytoma (SEGA), were visually evaluated and lesions were detected semiautomatically. Lesion to brain volume ratios were calculated and associated with epilepsy and neurodevelopmental outcomes at 2 years. RESULTS: Lesions were assessed on MRIs from 77 infants with TSC; 62 MRIs were sufficient for volume analysis. The presence of tubers and higher tuber-brain ratios were associated with the development of clinical seizures, independently of TSC gene variation and preventive treatment. Furthermore, higher tuber-brain ratios were associated with lower cognitive and motor development quotients at 2 years, independently of TSC gene variation and presence of epilepsy. DISCUSSION: In infants with TSC, there is a significant association between characteristic TSC lesions detected on early brain MRI and development of clinical seizures, as well as neurodevelopmental outcomes in the first 2 years of life. According to our results, early brain MRI findings may guide clinical care for young children with TSC. CLASSIFICATION OF EVIDENCE: This study provides Class I evidence that in infants with TSC, there is a significant association between characteristic TSC lesions on early brain MRI and the development of clinical seizures and neurodevelopmental outcomes in the first 2 years of life.


Assuntos
Epilepsia , Esclerose Tuberosa , Criança , Pré-Escolar , Epilepsia/complicações , Epilepsia/etiologia , Humanos , Lactente , Imageamento por Ressonância Magnética , Estudos Prospectivos , Convulsões/complicações , Esclerose Tuberosa/complicações , Esclerose Tuberosa/diagnóstico por imagem , Esclerose Tuberosa/genética
6.
J Neurodev Disord ; 14(1): 8, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-35030990

RESUMO

BACKGROUND: The genetic disorder tuberous sclerosis complex (TSC) is frequently accompanied by the development of neuropsychiatric disorders, including autism spectrum disorder and intellectual disability, with varying degrees of impairment. These co-morbidities in TSC have been linked to the structural brain abnormalities, such as cortical tubers, and recurrent epileptic seizures (in 70-80% cases). Previous transcriptomic analysis of cortical tubers revealed dysregulation of genes involved in cell adhesion in the brain, which may be associated with the neurodevelopmental deficits in TSC. In this study we aimed to investigate the expression of one of these genes - cell-adhesion molecule contactin-3. METHODS: Reverse transcription quantitative polymerase chain reaction for the contactin-3 gene (CNTN3) was performed in resected cortical tubers from TSC patients with drug-resistant epilepsy (n = 35, age range: 1-48 years) and compared to autopsy-derived cortical control tissue (n = 27, age range: 0-44 years), as well as by western blot analysis of contactin-3 (n = 7 vs n = 7, age range: 0-3 years for both TSC and controls) and immunohistochemistry (n = 5 TSC vs n = 4 controls). The expression of contactin-3 was further analyzed in fetal and postnatal control tissue by western blotting and in-situ hybridization, as well as in the SH-SY5Y neuroblastoma cell line differentiation model in vitro. RESULTS: CNTN3 gene expression was lower in cortical tubers from patients across a wide range of ages (fold change = - 0.5, p < 0.001) as compared to controls. Contactin-3 protein expression was lower in the age range of 0-3 years old (fold change = - 3.8, p < 0.001) as compared to the age-matched controls. In control brain tissue, contactin-3 gene and protein expression could be detected during fetal development, peaked around birth and during infancy and declined in the adult brain. CNTN3 expression was induced in the differentiated SH-SY5Y neuroblastoma cells in vitro (fold change = 6.2, p < 0.01). CONCLUSIONS: Our data show a lower expression of contactin-3 in cortical tubers of TSC patients during early postnatal period as compared to controls, which may affect normal brain development and might contribute to neuropsychiatric co-morbidities observed in patients with TSC.


Assuntos
Contactinas , Esclerose Tuberosa , Adolescente , Adulto , Transtorno do Espectro Autista/complicações , Transtorno do Espectro Autista/metabolismo , Encéfalo/metabolismo , Criança , Pré-Escolar , Contactinas/genética , Contactinas/metabolismo , Regulação para Baixo , Humanos , Lactente , Recém-Nascido , Pessoa de Meia-Idade , Esclerose Tuberosa/complicações , Esclerose Tuberosa/metabolismo , Adulto Jovem
7.
Clin Neurophysiol ; 133: 126-134, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34844043

RESUMO

OBJECTIVE: We retrospectively assessed the localizing value of patient-history-based semiology (PHS), video-based semiology (VS), long-term monitoring video electroencephalography (LTM-VEEG) and interictal high resolution electric source imaging (HR-ESI) in the presurgical workup of patients with tuberous sclerosis complex (TSC). METHODS: Data from 24 consecutive TSC surgical candidates who underwent both HR-ESI and LTM-VEEG was retrospectively collected. PHS and VS were analyzed to hypothesize the symptomatogenic zone localization. LTM-VEEG and HR-ESI localization results were extracted from the diagnostic reports. Localizing value was compared between modalities, taken the resected/disconnected area of surgical patients in consideration. HR-ESI's impact on the epileptogenic zone hypothesis and surgical workup was evaluated. RESULTS: Semiology, interictal EEG, ictal EEG and HR-ESI were localizing in 25%, 54%, 63% and 79% of patients. Inter-modality concordance ranged between 33-89%. In good surgical outcome patients, PHS, VS, interictal EEG, ictal EEG and HR-ESI showed concordance with resected area in 1/9 (11%), 0/9 (0%), 4/9 (44%), 3/9 (33%) and 6/9 patients (67%). HR-ESI positively impacts clinical management in 50% of patients. CONCLUSIONS: In presurgical evaluation of TSC patients, semiology often has limited localizing value. Presurgical work-up benefits from HR-ESI. SIGNIFICANCE: Our findings may advice future presurgical epilepsy workup of TSC patients with the ultimate aim to improve outcome.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiopatologia , Epilepsia/fisiopatologia , Cuidados Pré-Operatórios/métodos , Esclerose Tuberosa/fisiopatologia , Adolescente , Adulto , Encéfalo/cirurgia , Criança , Pré-Escolar , Eletroencefalografia , Epilepsia/cirurgia , Feminino , Humanos , Lactente , Masculino , Estudos Retrospectivos , Esclerose Tuberosa/cirurgia , Adulto Jovem
8.
Dev Med Child Neurol ; 64(4): 495-501, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34601720

RESUMO

AIM: To describe the evolution of electroencephalogram (EEG) characteristics in infants with tuberous sclerosis complex (TSC) and the relationship with neurodevelopmental outcome at 24 months. METHOD: Eighty-three infants were enrolled in the EPISTOP trial and underwent serial EEG follow-up until the age of 24 months (males n=45, females n=37, median age at enrolment 28d, interquartile range 14-54d). Maturation of the EEG background and epileptiform discharges were compared between the TSC1 and TSC2 variants and between preventive and conventional groups respectively. RESULTS: Children with TSC2 more frequently had a slower posterior dominant rhythm (PDR) at 24 months (51% vs 11%, p=0.002), a higher number of epileptiform foci (median=8 vs 4, p=0.003), and a lower fraction of EEGs without epileptiform discharges (18% vs 61%, p=0.001) at follow-up. A slower PDR at 24 months was significantly associated with lower cognitive (median=70 vs 80, p=0.028) and motor developmental quotients (median=70 vs 79, p=0.008). A higher fraction of EEGs without epileptiform discharges was associated with a lower probability of autism spectrum disorder symptoms (odds ratio=0.092, 95% confidence interval=0.009-0.912, p=0.042) and higher cognitive (p=0.004), language (p=0.002), and motor (p=0.001) developmental quotients at 24 months. INTERPRETATION: TSC2 is associated with more abnormal EEG characteristics compared to TSC1, which are predictive for neurodevelopmental outcome.


Assuntos
Transtorno do Espectro Autista , Esclerose Tuberosa , Transtorno do Espectro Autista/complicações , Pré-Escolar , Eletroencefalografia , Feminino , Humanos , Lactente , Masculino , Estudos Prospectivos , Esclerose Tuberosa/complicações , Esclerose Tuberosa/diagnóstico , Proteína 2 do Complexo Esclerose Tuberosa/genética
9.
Cell Mol Neurobiol ; 42(8): 2863-2892, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34709498

RESUMO

Tuberous sclerosis complex (TSC) is a monogenic disorder caused by mutations in either the TSC1 or TSC2 gene, two key regulators of the mechanistic target of the rapamycin complex pathway. Phenotypically, this leads to growth and formation of hamartomas in several organs, including the brain. Subependymal giant cell astrocytomas (SEGAs) are low-grade brain tumors commonly associated with TSC. Recently, gene expression studies provided evidence that the immune system, the MAPK pathway and extracellular matrix organization play an important role in SEGA development. However, the precise mechanisms behind the gene expression changes in SEGA are still largely unknown, providing a potential role for DNA methylation. We investigated the methylation profile of SEGAs using the Illumina Infinium HumanMethylation450 BeadChip (SEGAs n = 42, periventricular control n = 8). The SEGA methylation profile was enriched for the adaptive immune system, T cell activation, leukocyte mediated immunity, extracellular structure organization and the ERK1 & ERK2 cascade. More interestingly, we identified two subgroups in the SEGA methylation data and show that the differentially expressed genes between the two subgroups are related to the MAPK cascade and adaptive immune response. Overall, this study shows that the immune system, the MAPK pathway and extracellular matrix organization are also affected on DNA methylation level, suggesting that therapeutic intervention on DNA level could be useful for these specific pathways in SEGA. Moreover, we identified two subgroups in SEGA that seem to be driven by changes in the adaptive immune response and MAPK pathway and could potentially hold predictive information on target treatment response.


Assuntos
Astrocitoma , Esclerose Tuberosa , Humanos , Astrocitoma/metabolismo , Metilação de DNA/genética , Sirolimo/uso terapêutico , Esclerose Tuberosa/complicações , Esclerose Tuberosa/genética , Esclerose Tuberosa/patologia
10.
Epilepsia Open ; 6(4): 663-671, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34328682

RESUMO

OBJECTIVE: Patients with tuberous sclerosis complex (TSC) present with drug-resistant epilepsy in about 60% of cases, and evaluation for epilepsy surgery may be warranted. Correct delineation of the epileptogenic zone (EZ) among multiple dysplastic lesions on MRI represents a challenging step in pre-surgical evaluation. METHODS: Two experienced neuroradiologists evaluated pre- and post-surgical MRIs of 28 epilepsy surgery patients with TSC, assessing characteristics of tubers, cysts, calcifications, and focal cortical dysplasia (FCD)-resembling lesions. Utilizing multiple metrics, we compared MRI features of the EZ-defined as the resected area in TSC patients who achieved seizure-freedom 2 years after epilepsy surgery-with features of other brain areas. Using combinatorial analysis, we identified combinations of dysplastic features that are most frequently observed in the epileptogenic zone in TSC patients. RESULTS: All TSC-associated dysplastic features were more frequently observed in the EZ than in other brain areas (increased cortical thickness, gray-white matter blurring, transmantle sign, calcifications, and tubers; Kendal's tau 0.35, 0.25, 0.27, 0.26, and 0.23, respectively; P value <.001 in all). No single feature could reliably and independently indicate the EZ in all patients. Conversely, the EZ was indicated by the presence of the combination of three of the following features: tubers, transmantle sign, increased cortical thickness, calcifications, and the largest FCD-affected area. Out of these, the largest FCD-affected area emerged as the most reliable indicator of the EZ, combined either with calcifications or tubers. SIGNIFICANCE: The epileptogenic zone in TSC patients harbors multiple dysplastic features, consistent with focal cortical dysplasia. A specific combination of these features can indicate the EZ and aid in pre-surgical MRI evaluation in epilepsy surgery candidates with TSC.


Assuntos
Epilepsia , Malformações do Desenvolvimento Cortical , Esclerose Tuberosa , Encéfalo/patologia , Criança , Epilepsia/complicações , Epilepsia/etiologia , Humanos , Imageamento por Ressonância Magnética , Malformações do Desenvolvimento Cortical/complicações , Malformações do Desenvolvimento Cortical/diagnóstico por imagem , Malformações do Desenvolvimento Cortical/patologia , Esclerose Tuberosa/complicações , Esclerose Tuberosa/diagnóstico por imagem
11.
Neuropathol Appl Neurobiol ; 47(6): 826-839, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34003514

RESUMO

AIMS: Focal cortical dysplasia (FCD) type 2 is an epileptogenic malformation of the neocortex associated with somatic mutations in the mammalian target of rapamycin (mTOR) pathway. Histopathologically, FCD 2 is subdivided into FCD 2a and FCD 2b, the only discriminator being the presence of balloon cells (BCs) in FCD 2b. While pro-epileptogenic immune system activation and inflammatory responses are commonly detected in both subtypes, it is unknown what contextual role BCs play. METHODS: The present study employed RNA sequencing of surgically resected brain tissue from FCD 2a (n = 11) and FCD 2b (n = 20) patients compared to autopsy control (n = 9) focusing on three immune system processes: adaptive immunity, innate immunity and cytokine production. This analysis was followed by immunohistochemistry on a clinically well-characterised FCD 2 cohort. RESULTS: Differential expression analysis revealed stronger expression of components of innate immunity, adaptive immunity and cytokine production in FCD 2b than in FCD 2a, particularly complement activation and antigen presentation. Immunohistochemical analysis confirmed these findings, with strong expression of leukocyte antigen I and II in FCD 2b as compared to FCD 2a. Moreover, T-lymphocyte tissue infiltration was elevated in FCD 2b. Expression of markers of immune system activation in FCD 2b was concentrated in subcortical white matter. Lastly, antigen presentation was strongly correlated with BC load in FCD 2b lesions. CONCLUSION: We conclude that, next to mutation-driven mTOR activation and seizure activity, BCs are crucial drivers of inflammation in FCD 2b. Our findings indicate that therapies targeting inflammation may be beneficial in FCD 2b.


Assuntos
Epilepsia/patologia , Sistema Imunitário/metabolismo , Malformações do Desenvolvimento Cortical do Grupo I/patologia , Malformações do Desenvolvimento Cortical/patologia , Serina-Treonina Quinases TOR/metabolismo , Adolescente , Criança , Epilepsia/genética , Epilepsia/imunologia , Humanos , Masculino , Malformações do Desenvolvimento Cortical/genética , Malformações do Desenvolvimento Cortical/imunologia , Malformações do Desenvolvimento Cortical do Grupo I/genética , Malformações do Desenvolvimento Cortical do Grupo I/imunologia , Pessoa de Meia-Idade , Mutação/genética , Neocórtex/patologia , Neurônios/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/imunologia , Substância Branca/metabolismo
12.
Neuropathol Appl Neurobiol ; 47(6): 796-811, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33942341

RESUMO

AIMS: Tuberous sclerosis complex (TSC) is a genetic disorder associated with dysregulation of the mechanistic target of rapamycin complex 1 (mTORC1) signalling pathway. Neurodevelopmental disorders, frequently present in TSC, are linked to cortical tubers in the brain. We previously reported microRNA-34a (miR-34a) among the most upregulated miRs in tubers. Here, we characterised miR-34a expression in tubers with the focus on the early brain development and assessed the regulation of mTORC1 pathway and corticogenesis by miR-34a. METHODS: We analysed the expression of miR-34a in resected cortical tubers (n = 37) compared with autopsy-derived control tissue (n = 27). The effect of miR-34a overexpression on corticogenesis was assessed in mice at E18. The regulation of the mTORC1 pathway and the expression of the bioinformatically predicted target genes were assessed in primary astrocyte cultures from three patients with TSC and in SH-SY5Y cells following miR-34a transfection. RESULTS: The peak of miR-34a overexpression in tubers was observed during infancy, concomitant with the presence of pathological markers, particularly in giant cells and dysmorphic neurons. miR-34a was also strongly expressed in foetal TSC cortex. Overexpression of miR-34a in mouse embryos decreased the percentage of cells migrated to the cortical plate. The transfection of miR-34a mimic in TSC astrocytes negatively regulated mTORC1 and decreased the expression of the target genes RAS related (RRAS) and NOTCH1. CONCLUSIONS: MicroRNA-34a is most highly overexpressed in tubers during foetal and early postnatal brain development. miR-34a can negatively regulate mTORC1; however, it may also contribute to abnormal corticogenesis in TSC.


Assuntos
Astrócitos/metabolismo , Encéfalo/crescimento & desenvolvimento , MicroRNAs/genética , Esclerose Tuberosa/genética , Adolescente , Adulto , Animais , Encéfalo/patologia , Córtex Cerebral/patologia , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Neurônios/patologia , Transdução de Sinais/genética , Esclerose Tuberosa/complicações , Esclerose Tuberosa/patologia , Adulto Jovem
13.
Epilepsia ; 62(5): 1208-1219, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33778971

RESUMO

OBJECTIVE: To study the association between timing and characteristics of the first electroencephalography (EEG) with epileptiform discharges (ED-EEG) and epilepsy and neurodevelopment at 24 months in infants with tuberous sclerosis complex (TSC). METHODS: Patients enrolled in the prospective Epileptogenesis in a genetic model of epilepsy - Tuberous sclerosis complex (EPISTOP) trial, had serial EEG monitoring until the age of 24 months. The timing and characteristics of the first ED-EEG were studied in relation to clinical outcome. Epilepsy-related outcomes were analyzed separately in a conventionally followed group (initiation of vigabatrin after seizure onset) and a preventive group (initiation of vigabatrin before seizures, but after appearance of interictal epileptiform discharges [IEDs]). RESULTS: Eighty-three infants with TSC were enrolled at a median age of 28 days (interquartile range [IQR] 14-54). Seventy-nine of 83 patients (95%) developed epileptiform discharges at a median age of 77 days (IQR 23-111). Patients with a pathogenic TSC2 variant were significantly younger (P-value .009) at first ED-EEG and more frequently had multifocal IED (P-value .042) than patients with a pathogenic TSC1 variant. A younger age at first ED-EEG was significantly associated with lower cognitive (P-value .010), language (P-value .001), and motor (P-value .013) developmental quotients at 24 months. In the conventional group, 48 of 60 developed seizures. In this group, the presence of focal slowing on the first ED-EEG was predictive of earlier seizure onset (P-value .030). Earlier recording of epileptiform discharges (P-value .019), especially when multifocal (P-value .026) was associated with higher risk of drug-resistant epilepsy. In the preventive group, timing, distribution of IED, or focal slowing, was not associated with the epilepsy outcomes. However, when multifocal IEDs were present on the first ED-EEG, preventive treatment delayed the onset of seizures significantly (P-value <.001). SIGNIFICANCE: Early EEG findings help to identify TSC infants at risk of severe epilepsy and neurodevelopmental delay and those who may benefit from preventive treatment with vigabatrin.


Assuntos
Anticonvulsivantes/uso terapêutico , Diagnóstico Precoce , Epilepsia/diagnóstico , Epilepsia/tratamento farmacológico , Esclerose Tuberosa/complicações , Deficiências do Desenvolvimento/epidemiologia , Deficiências do Desenvolvimento/etiologia , Eletroencefalografia , Epilepsia/etiologia , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Esclerose Tuberosa/diagnóstico , Esclerose Tuberosa/genética , Proteína 1 do Complexo Esclerose Tuberosa/genética , Proteína 2 do Complexo Esclerose Tuberosa/genética , Vigabatrina/uso terapêutico
14.
Brain Pathol ; 31(5): e12949, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33786950

RESUMO

Tuberous sclerosis complex (TSC) is a congenital disorder characterized by cortical malformations and concomitant epilepsy caused by loss-of-function mutations in the mTOR suppressors TSC1 or TSC2. While the underlying molecular changes caused by mTOR activation in TSC have previously been investigated, the drivers of these transcriptional change have not been fully elucidated. A better understanding of the perturbed transcriptional regulation could lead to the identification of novel pathways for therapeutic intervention not only in TSC, but other genetic epilepsies in which mTOR activation plays a key role, such as focal cortical dysplasia 2b (FCD). Here, we analyzed RNA sequencing data from cortical tubers and a tsc2-/- zebrafish. We identified differential expression of the transcription factors (TFs) SPI1/PU.1, IRF8, GBX2, and IKZF1 of which SPI1/PU.1 and IRF8 targets were enriched among the differentially expressed genes. Furthermore, for SPI1/PU.1 these findings were conserved in TSC zebrafish model. Next, we confirmed overexpression of SPI1/PU.1 on the RNA and protein level in a separate cohort of surgically resected TSC tubers and FCD tissue, in fetal TSC tissue, and a Tsc1GFAP-/- mouse model of TSC. Subsequently, we validated the expression of SPI1/PU.1 in dysmorphic cells with mTOR activation in TSC tubers. In fetal TSC, we detected SPI1/PU.1 expression prenatally and elevated RNA Spi1 expression in Tsc1GFAP-/- mice before the development of seizures. Finally, in vitro, we identified that in astrocytes and neurons SPI1 transcription was driven by H2 O2 -induced oxidative stress, independent of mTOR. We identified SPI1/PU.1 as a novel TF involved in the pro-inflammatory gene expression of malformed cells in TSC and FCD 2b. This transcriptional program is activated in response to oxidative stress and already present prenatally. Importantly, SPI1/PU.1 protein appears to be strictly limited to malformed cells, as we did not find SPI1/PU.1 protein expression in mice nor in our in vitro models.


Assuntos
Estresse Oxidativo/fisiologia , Proteínas Proto-Oncogênicas/metabolismo , Transativadores/metabolismo , Proteína 2 do Complexo Esclerose Tuberosa/metabolismo , Esclerose Tuberosa/patologia , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Humanos , Malformações do Desenvolvimento Cortical/metabolismo , Malformações do Desenvolvimento Cortical/patologia , Camundongos Transgênicos , Neurônios/patologia , Esclerose Tuberosa/genética , Esclerose Tuberosa/metabolismo , Proteína 2 do Complexo Esclerose Tuberosa/genética , Regulação para Cima
15.
J Pediatr ; 233: 156-162.e2, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33640330

RESUMO

OBJECTIVE: To correlate fetal brain magnetic resonance imaging (MRI) findings with epilepsy characteristics and neurodevelopment at 2 years of age in children with tuberous sclerosis complex (TSC) to improve prenatal counseling. STUDY DESIGN: This retrospective cohort study was performed in a collaboration between centers of the EPISTOP consortium. We included children with definite TSC, fetal MRIs, and available follow-up data at 2 years of age. A pediatric neuroradiologist masked to the patient's clinical characteristics evaluated all fetal MRIs. MRIs were categorized for each of the 10 brain lobes as score 0: no (sub)cortical lesions or doubt; score 1: a single small lesion; score 2: more than one small lesion or at least one large lesion (>5 mm). Neurologic manifestations were correlated to lesion sum scores. RESULTS: Forty-one children were included. Median gestational age at MRI was 33.3 weeks; (sub)cortical lesions were detected in 97.6%. Mean lesion sum score was 4.5. At 2 years, 58.5% of patients had epilepsy and 22% had drug-resistant epilepsy. Cognitive, language, and motor development were delayed in 38%, 81%, and 50% of patients, respectively. Autism spectrum disorder (ASD) was diagnosed in 20.5%. Fetal MRI lesion sum scores were significantly associated with cognitive and motor development, and with ASD diagnosis, but not with epilepsy characteristics. CONCLUSIONS: Fetal cerebral lesion scores correlate with neurodevelopment and ASD at 2 years in children with TSC.


Assuntos
Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Transtornos do Neurodesenvolvimento/epidemiologia , Esclerose Tuberosa/epidemiologia , Pré-Escolar , Transtornos Cognitivos/epidemiologia , Estudos de Coortes , Epilepsia/epidemiologia , Feminino , Seguimentos , Humanos , Lactente , Transtornos do Desenvolvimento da Linguagem/epidemiologia , Gravidez , Estudos Retrospectivos
16.
Eur J Paediatr Neurol ; 30: 88-96, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33461085

RESUMO

BACKGROUND: Variants of GATOR1-genes represent a recognised cause of focal cortical dysplasia (FCD), the most common structural aetiology in paediatric drug-resistant focal epilepsy. Reports on familial cases of GATOR1-associated FCD are limited, especially with respect to epilepsy surgery outcomes. METHODS: We present phenotypical manifestations of four unrelated patients with drug-resistant focal epilepsy, FCD and a first-degree relative with epilepsy. All patients underwent targeted gene panel sequencing as a part of the presurgical work up. Literature search was performed to compare our findings to previously published cases. RESULTS: The children (probands) had a more severe phenotype than their parents, including drug-resistant epilepsy and developmental delay, and they failed to achieve seizure freedom post-surgically. All patients had histopathologically confirmed FCD (types IIa, IIb, Ia). In Patient 1 and her affected father, we detected a known pathogenic NPRL2 variant. In patients 2 and 3 and their affected parents, we found novel likely pathogenic germline DEPDC5 variants. In family 4, we detected a novel variant in NPRL3. We identified 15 additional cases who underwent epilepsy surgery for GATOR1-associated FCD, with a positive family history of epilepsy in the literature; in 8/13 tested, the variant was inherited from an asymptomatic parent. CONCLUSION: The presented cases displayed a severity gradient in phenotype with children more severely affected than the parents. Although patients with GATOR1-associated FCD are considered good surgical candidates, post-surgical seizure outcome was poor in our familial cases, suggesting that accurate identification of the epileptogenic zone may be more challenging in this subgroup of patients.


Assuntos
Proteínas Ativadoras de GTPase/genética , Malformações do Desenvolvimento Cortical/genética , Malformações do Desenvolvimento Cortical/cirurgia , Proteínas Supressoras de Tumor/genética , Adolescente , Criança , Epilepsia Resistente a Medicamentos/genética , Feminino , Mutação em Linhagem Germinativa , Humanos , Imageamento por Ressonância Magnética , Masculino , Fenótipo , Estudos Retrospectivos
17.
JAMA Neurol ; 78(3): 285-292, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33346789

RESUMO

Importance: Efficacy of cannabidiol has been demonstrated in seizures associated with Lennox-Gastaut and Dravet syndromes but appears not yet to have been established in conditions with primarily focal seizures, such as tuberous sclerosis complex (TSC). Objective: To evaluate efficacy and safety of 25-mg/kg/day and 50-mg/kg/day cannabidiol dosages vs placebo against seizures associated with TSC. Design, Setting, and Participants: This double-blind, placebo-controlled randomized clinical trial (GWPCARE6) enrolled patients between April 6, 2016, and October 4, 2018; follow-up was completed on February 15, 2019. The trial was conducted at 46 sites in Australia, Poland, Spain, the Netherlands, United Kingdom, and United States. Eligible patients (aged 1-65 years) were those with a clinical diagnosis of TSC and medication-resistant epilepsy who had had at least 8 TSC-associated seizures during the 4-week baseline period, with at least 1 seizure occurring in at least 3 of the 4 weeks, and were currently taking at least 1 antiepileptic medication. Interventions: Patients received oral cannabidiol at 25 mg/kg/day (CBD25) or 50 mg/kg/day (CBD50) or a matched placebo for 16 weeks. Main Outcomes and Measures: The prespecified primary outcome was the change from baseline in number of TSC-associated seizures for cannabidiol vs placebo during the treatment period. Results: Of 255 patients screened for eligibility, 31 were excluded and 224 were randomized. Of the 224 included patients (median [range] age, 11.4 [1.1-56.8] years; 93 female patients [41.5%]), 75 were randomized to CBD25, 73 to CBD50, and 76 to placebo, with 201 completing treatment. The percentage reduction from baseline in the type of seizures considered the primary end point was 48.6% (95% CI, 40.4%-55.8%) for the CBD25 group, 47.5% (95% CI, 39.0%-54.8%) for the CBD50 group, and 26.5% (95% CI, 14.9%-36.5%) for the placebo group; the percentage reduction from placebo was 30.1% (95% CI, 13.9%-43.3%; P < .001) for the CBD25 group and 28.5% (95% CI, 11.9%-42.0%; nominal P = .002) for the CBD50 group. The most common adverse events were diarrhea (placebo group, 19 [25%]; CBD25 group, 23 [31%]; CBD50 group, 41 [56%]) and somnolence (placebo group, 7 [9%]; CBD25 group, 10 [13%]; CBD50 group, 19 [26%]), which occurred more frequently with cannabidiol than placebo. Eight patients in CBD25 group, 10 in CBD50 group, and 2 in the placebo group discontinued treatment because of adverse events. Twenty-eight patients taking cannabidiol (18.9%) had elevated liver transaminase levels vs none taking placebo. Conclusions and Relevance: Cannabidiol significantly reduced TSC-associated seizures compared with placebo. The 25-mg/kg/day dosage had a better safety profile than the 50-mg/kg/day dosage. Trial Registration: ClinicalTrials.gov Identifier: NCT02544763.


Assuntos
Anticonvulsivantes/administração & dosagem , Canabidiol/administração & dosagem , Convulsões/diagnóstico , Convulsões/tratamento farmacológico , Esclerose Tuberosa/diagnóstico , Esclerose Tuberosa/tratamento farmacológico , Adolescente , Adulto , Anticonvulsivantes/efeitos adversos , Canabidiol/efeitos adversos , Criança , Pré-Escolar , Diarreia/induzido quimicamente , Relação Dose-Resposta a Droga , Método Duplo-Cego , Feminino , Seguimentos , Humanos , Lactente , Internacionalidade , Masculino , Pessoa de Meia-Idade , Convulsões/epidemiologia , Sonolência/efeitos dos fármacos , Resultado do Tratamento , Esclerose Tuberosa/epidemiologia , Adulto Jovem
18.
J Neuropathol Exp Neurol ; 79(10): 1054-1064, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32954437

RESUMO

Tuberous sclerosis complex (TSC) is a monogenetic disease that arises due to mutations in either the TSC1 or TSC2 gene and affects multiple organ systems. One of the hallmark manifestations of TSC are cortical malformations referred to as cortical tubers. These tubers are frequently associated with treatment-resistant epilepsy. Some of these patients are candidates for epilepsy surgery. White matter abnormalities, such as loss of myelin and oligodendroglia, have been described in a small subset of resected tubers but mechanisms underlying this phenomenon are unclear. Herein, we analyzed a variety of neuropathologic and immunohistochemical features in gray and white matter areas of resected cortical tubers from 46 TSC patients using semi-automated quantitative image analysis. We observed divergent amounts of myelin basic protein as well as numbers of oligodendroglia in both gray and white matter when compared with matched controls. Analyses of clinical data indicated that reduced numbers of oligodendroglia were associated with lower numbers on the intelligence quotient scale and that lower amounts of myelin-associated oligodendrocyte basic protein were associated with the presence of autism-spectrum disorder. In conclusion, myelin pathology in cortical tubers extends beyond the white matter and may be linked to cognitive dysfunction in TSC patients.


Assuntos
Córtex Cerebral/patologia , Substância Cinzenta/patologia , Bainha de Mielina/patologia , Esclerose Tuberosa/patologia , Substância Branca/patologia , Feminino , Humanos , Masculino , Oligodendroglia/patologia
19.
Ann Clin Transl Neurol ; 7(8): 1371-1381, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32705817

RESUMO

OBJECTIVE: To evaluate the relationship between age at seizure onset and neurodevelopmental outcome at age 24 months in infants with TSC, as well as the effect on neurodevelopmental outcome of early versus conventional treatment of epileptic seizures with vigabatrin (80-150 mg/kg/day). METHODS: Infants with TSC, aged ≤4 months and without previous seizures were enrolled in a prospective study and closely followed with monthly video EEG and serial standardized neurodevelopmental testing (Bayley Scales of Infant Development and Autism Diagnostic Observation Schedule). RESULTS: Eighty infants were enrolled. At the age of 24 months testing identified risk of Autism Spectrum Disorder (ASD) in 24/80 children (30.0%), and developmental delay (DD) in 26/80 (32.5%). Children with epilepsy (51/80; 63.8%) had a higher risk of ASD (P = 0.02) and DD (P = 0.001). Overall, no child presented with moderate or severe DD at 24 months (developmental quotient < 55). In 20% of children abnormal developmental trajectories were detected before the onset of seizures. Furthermore, 21% of all children with risk of ASD at 24 months had not developed seizures at that timepoint. There was no significant difference between early and conventional treatment with respect to rate of risk of ASD (P = 0.8) or DD (P = 0.9) at 24 months. INTERPRETATION: This study confirms a relationship between epilepsy and risk of ASD/DD. However, in this combined randomized/open label study, early treatment with vigabatrin did not alter the risk of ASD or DD at age 2 years.


Assuntos
Transtorno do Espectro Autista/etiologia , Deficiências do Desenvolvimento/etiologia , Epilepsia/complicações , Epilepsia/etiologia , Esclerose Tuberosa/complicações , Anticonvulsivantes/administração & dosagem , Transtorno do Espectro Autista/prevenção & controle , Pré-Escolar , Deficiências do Desenvolvimento/prevenção & controle , Epilepsia/tratamento farmacológico , Feminino , Seguimentos , Humanos , Lactente , Masculino , Avaliação de Resultados em Cuidados de Saúde , Vigabatrina/administração & dosagem
20.
Structure ; 28(8): 933-942.e4, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32502382

RESUMO

The TSC complex is the cognate GTPase-activating protein (GAP) for the small GTPase Rheb and a crucial regulator of the mechanistic target of rapamycin complex 1 (mTORC1). Mutations in the TSC1 and TSC2 subunits of the complex cause tuberous sclerosis complex (TSC). We present the crystal structure of the catalytic asparagine-thumb GAP domain of TSC2. A model of the TSC2-Rheb complex and molecular dynamics simulations suggest that TSC2 Asn1643 and Rheb Tyr35 are key active site residues, while Rheb Arg15 and Asp65, previously proposed as catalytic residues, contribute to the TSC2-Rheb interface and indirectly aid catalysis. The TSC2 GAP domain is further stabilized by interactions with other TSC2 domains. We characterize TSC2 variants that partially affect TSC2 functionality and are associated with atypical symptoms in patients, suggesting that mutations in TSC1 and TSC2 might predispose to neurological and vascular disorders without fulfilling the clinical criteria for TSC.


Assuntos
Domínio Catalítico , Mutação de Sentido Incorreto , Proteína 2 do Complexo Esclerose Tuberosa/química , Esclerose Tuberosa/genética , Células HEK293 , Humanos , Simulação de Dinâmica Molecular , Proteína Enriquecida em Homólogo de Ras do Encéfalo/química , Proteína Enriquecida em Homólogo de Ras do Encéfalo/metabolismo , Proteína 2 do Complexo Esclerose Tuberosa/genética , Proteína 2 do Complexo Esclerose Tuberosa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA