Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Clin Cancer Res ; 27(18): 5038-5048, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-33419780

RESUMO

PURPOSE: Immunoprofiling to identify biomarkers and integration with clinical trial outcomes are critical to improving immunotherapy approaches for patients with cancer. However, the translational potential of individual studies is often limited by small sample size of trials and the complexity of immuno-oncology biomarkers. Variability in assay performance further limits comparison and interpretation of data across studies and laboratories. EXPERIMENTAL DESIGN: To enable a systematic approach to biomarker identification and correlation with clinical outcome across trials, the Cancer Immune Monitoring and Analysis Centers and Cancer Immunologic Data Commons (CIMAC-CIDC) Network was established through support of the Cancer MoonshotSM Initiative of the National Cancer Institute (NCI) and the Partnership for Accelerating Cancer Therapies (PACT) with industry partners via the Foundation for the NIH. RESULTS: The CIMAC-CIDC Network is composed of four academic centers with multidisciplinary expertise in cancer immunotherapy that perform validated and harmonized assays for immunoprofiling and conduct correlative analyses. A data coordinating center (CIDC) provides the computational expertise and informatics platforms for the storage, integration, and analysis of biomarker and clinical data. CONCLUSIONS: This overview highlights strategies for assay harmonization to enable cross-trial and cross-site data analysis and describes key elements for establishing a network to enhance immuno-oncology biomarker development. These include an operational infrastructure, validation and harmonization of core immunoprofiling assays, platforms for data ingestion and integration, and access to specimens from clinical trials. Published in the same volume are reports of harmonization for core analyses: whole-exome sequencing, RNA sequencing, cytometry by time of flight, and IHC/immunofluorescence.


Assuntos
Biomarcadores Tumorais/imunologia , Imunoterapia , Monitorização Imunológica , Neoplasias/imunologia , Neoplasias/terapia , Humanos
2.
Clin Cancer Res ; 27(18): 5049-5061, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-33323402

RESUMO

PURPOSE: Whole-exome (WES) and RNA sequencing (RNA-seq) are key components of cancer immunogenomic analyses. To evaluate the consistency of tumor WES and RNA-seq profiling platforms across different centers, the Cancer Immune Monitoring and Analysis Centers (CIMAC) and the Cancer Immunologic Data Commons (CIDC) conducted a systematic harmonization study. EXPERIMENTAL DESIGN: DNA and RNA were centrally extracted from fresh frozen and formalin-fixed paraffin-embedded non-small cell lung carcinoma tumors and distributed to three centers for WES and RNA-seq profiling. In addition, two 10-plex HapMap cell line pools with known mutations were used to evaluate the accuracy of the WES platforms. RESULTS: The WES platforms achieved high precision (> 0.98) and recall (> 0.87) on the HapMap pools when evaluated on loci using > 50× common coverage. Nonsynonymous mutations clustered by tumor sample, achieving an index of specific agreement above 0.67 among replicates, centers, and sample processing. A DV200 > 24% for RNA, as a putative presequencing RNA quality control (QC) metric, was found to be a reliable threshold for generating consistent expression readouts in RNA-seq and NanoString data. MedTIN > 30 was likewise assessed as a reliable RNA-seq QC metric, above which samples from the same tumor across replicates, centers, and sample processing runs could be robustly clustered and HLA typing, immune infiltration, and immune repertoire inference could be performed. CONCLUSIONS: The CIMAC collaborating laboratory platforms effectively generated consistent WES and RNA-seq data and enable robust cross-trial comparisons and meta-analyses of highly complex immuno-oncology biomarker data across the NCI CIMAC-CIDC Network.


Assuntos
Sequência de Bases , DNA de Neoplasias/análise , Sequenciamento do Exoma , Neoplasias/genética , RNA Neoplásico/análise , Humanos , Monitorização Imunológica , Neoplasias/imunologia
3.
Int J Dev Biol ; 57(1): 49-54, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23585352

RESUMO

TCF1 belongs to the family of LEF1/TCF transcription factors that regulate gene expression downstream of Wnt/ß-catenin signaling, which is crucial for embryonic development and is involved in adult stem cell regulation and tumor growth. In early Xenopus embryos, tcf1 plays an important role in mesoderm induction and patterning. Foxd3 emerged as a potential tcf1 target gene in a microarray analysis of gastrula stage embryos. Because foxd3 and tcf1 are coexpressed during gastrulation, we investigated whether foxd3 is regulated by tcf1. By using morpholino-mediated knockdown, we show that during gastrulation foxd3 expression is dependent on tcf1. By chromatin immunoprecipitation, we also demonstrate direct interaction of ß-catenin/tcf complexes with the foxd3 gene locus. Hence, our results indicate that tcf1 acts as an essential activator of foxd3, which is critical for dorsal mesoderm formation in early embryos.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Gastrulação , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriologia , Animais , Fatores de Transcrição Forkhead/biossíntese , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Fator 1-alfa Nuclear de Hepatócito/biossíntese , Mesoderma/embriologia , Morfolinos , Transdução de Sinais/genética , Proteínas Wnt/metabolismo , Via de Sinalização Wnt , Proteínas de Xenopus/biossíntese , Xenopus laevis/genética , Xenopus laevis/metabolismo , beta Catenina/metabolismo
4.
Proc Natl Acad Sci U S A ; 107(37): 16160-5, 2010 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-20805504

RESUMO

The formation of primitive (embryonic) blood in vertebrates is mediated by spatio-temporally restricted signaling between different tissue layers. In Xenopus, in which primitive blood originates in the ventral blood island, this involves the secretion of bone morphogenetic protein (BMP) ligands by the ectoderm that signal to the underlying mesoderm during gastrulation. Using novel transgenic reporter lines, we report that the canonical Wnt/ß-catenin pathway is also activated in the blood islands in Xenopus. Furthermore, Wnt-reporter activity was also detected in the blood islands of the mouse yolk sac. By using morpholino-mediated depletion in Xenopus, we identified Wnt4 as the ligand that is expressed in the mesoderm of the ventral blood island and is essential for the expression of hematopoietic and erythroid marker genes. Injection of an inducible Wnt-interfering construct further showed that, during gastrulation, Wnt/ß-catenin signaling is required both in the mesoderm and in the overlying ectoderm for the formation of the ventral blood island. Using recombination assays with embryonic explants, we document that ectodermal BMP4 expression is dependent on Wnt4 signals from the mesoderm. Our results thus reveal a unique role for Wnt4-mediated canonical signaling in the formation and maintenance of the ventral blood island in Xenopus.


Assuntos
Hematopoese , Transdução de Sinais , Proteínas Wnt/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriologia , Xenopus laevis/metabolismo , beta Catenina/metabolismo , Animais , Proteína Morfogenética Óssea 4/genética , Proteína Morfogenética Óssea 4/metabolismo , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Wnt/genética , Proteína Wnt4 , Proteínas de Xenopus/genética , Xenopus laevis/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA