Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Macromol Biosci ; 23(4): e2200450, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36662774

RESUMO

Elongated protein-based micro- and nanostructures are of great interest for a wide range of biomedical applications, where they can serve as a backbone for surface functionalization and as vehicles for drug delivery. Current production methods for protein constructs lack precise control of either shape and dimensions or render structures fixed to substrates. This work demonstrates production of recombinant spider silk nanowires suspended in solution, starting with liquid bridge induced assembly (LBIA) on a substrate, followed by release using ultrasonication, and concentration by centrifugation. The significance of this method lies in that it provides i) reproducability (standard deviation of length <13% and of diameter <38%), ii) scalability of fabrication, iii) compatibility with autoclavation with retained shape and function, iv) retention of bioactivity, and v) easy functionalization both pre- and post-formation. This work demonstrates how altering the function and nanotopography of a surface by nanowire coating supports the attachment and growth of human mesenchymal stem cells (hMSCs). Cell compatibility is further studied through integration of nanowires during aggregate formation of hMSCs and the breast cancer cell line MCF7. The herein-presented industrial-compatible process enables silk nanowires for use as functionalizing agents in a variety of cell culture applications and medical research.


Assuntos
Nanoestruturas , Nanofios , Aranhas , Humanos , Animais , Seda/química , Técnicas de Cultura de Células
2.
Commun Biol ; 3(1): 339, 2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-32620783

RESUMO

The composition of serum proteins is reflecting the current health status and can, with the right tools, be used to detect early signs of disease, such as an emerging cancer. An earlier diagnosis of cancer would greatly increase the chance of an improved outcome for the patients. However, there is still an unmet need for proficient tools to decipher the information in the blood proteome, which calls for further technological development. Here, we present a proof-of-concept study that demonstrates an alternative approach for multiplexed protein profiling of serum samples in solution, using DNA barcoded scFv antibody fragments and next generation sequencing. The outcome shows high accuracy when discriminating samples derived from pancreatic cancer patients and healthy controls and represents a scalable alternative for serum analysis.


Assuntos
Biomarcadores Tumorais/sangue , Proteínas Sanguíneas/metabolismo , Carcinoma Ductal Pancreático/sangue , Neoplasias Pancreáticas/sangue , Proteoma/análise , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/imunologia , Proteínas Sanguíneas/análise , Proteínas Sanguíneas/imunologia , Carcinoma Ductal Pancreático/patologia , Estudos de Casos e Controles , Biologia Computacional , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Neoplasias Pancreáticas/patologia , Proteoma/imunologia , Proteoma/metabolismo
3.
Biomacromolecules ; 15(5): 1696-706, 2014 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-24678858

RESUMO

Functionalization of biocompatible materials for presentation of active protein domains is an area of growing interest. Herein, we describe a strategy for functionalization of recombinant spider silk via gene fusion to affinity domains of broad biotechnological use. Four affinity domains of different origin and structure; the IgG-binding domains Z and C2, the albumin-binding domain ABD, and the biotin-binding domain M4, were all successfully produced as soluble silk fusion proteins under nondenaturing purification conditions. Silk films and fibers produced from the fusion proteins were demonstrated to be chemically and thermally stable. Still, the bioactive domains are concluded to be folded and accessible, since their respective targets could be selectively captured from complex samples, including rabbit serum and human plasma. Interestingly, materials produced from mixtures of two different silk fusion proteins displayed combined binding properties, suggesting that tailor-made materials with desired stoichiometry and surface distributions of several binding domains can be produced. Further, use of the IgG binding ability as a general mean for presentation of desired biomolecules could be demonstrated for a human vascular endothelial growth factor (hVEGF) model system, via a first capture of anti-VEGF IgG to silk containing the Z-domain, followed by incubation with hVEGF. Taken together, this study demonstrates the potential of recombinant silk, genetically functionalized with affinity domains, for construction of biomaterials capable of presentation of almost any desired biomolecule.


Assuntos
Materiais Biocompatíveis/química , Proteínas Recombinantes de Fusão/química , Seda/química , Animais , Materiais Biocompatíveis/isolamento & purificação , Materiais Biocompatíveis/metabolismo , Humanos , Imunoglobulina G/química , Imunoglobulina G/metabolismo , Estrutura Terciária de Proteína , Coelhos , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Seda/isolamento & purificação , Seda/metabolismo , Aranhas/química , Fator A de Crescimento do Endotélio Vascular/química , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA