Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 18(6): e1010514, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35675371

RESUMO

A cascade of histone acetylation events with subsequent incorporation of a histone H2A variant plays an essential part in transcription regulation in various model organisms. A key player in this cascade is the chromatin remodelling complex SWR1, which replaces the canonical histone H2A with its variant H2A.Z. Transcriptional regulation of polycistronic transcription units in the unicellular parasite Trypanosoma brucei has been shown to be highly dependent on acetylation of H2A.Z, which is mediated by the histone-acetyltransferase HAT2. The chromatin remodelling complex which mediates H2A.Z incorporation is not known and an SWR1 orthologue in trypanosomes has not yet been reported. In this study, we identified and characterised an SWR1-like remodeller complex in T. brucei that is responsible for Pol II-dependent transcriptional regulation. Bioinformatic analysis of potential SNF2 DEAD/Box helicases, the key component of SWR1 complexes, identified a 1211 amino acids-long protein that exhibits key structural characteristics of the SWR1 subfamily. Systematic protein-protein interaction analysis revealed the existence of a novel complex exhibiting key features of an SWR1-like chromatin remodeller. RNAi-mediated depletion of the ATPase subunit of this complex resulted in a significant reduction of H2A.Z incorporation at transcription start sites and a subsequent decrease of steady-state mRNA levels. Furthermore, depletion of SWR1 and RNA-polymerase II (Pol II) caused massive chromatin condensation. The potential function of several proteins associated with the SWR1-like complex and with HAT2, the key factor of H2A.Z incorporation, is discussed.


Assuntos
Proteínas de Saccharomyces cerevisiae , Trypanosoma brucei brucei , Adenosina Trifosfatases/metabolismo , Cromatina , Montagem e Desmontagem da Cromatina , Histonas/metabolismo , Nucleossomos , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo
2.
PLoS Biol ; 18(6): e3000741, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32520929

RESUMO

Mitochondrial metabolic remodeling is a hallmark of the Trypanosoma brucei digenetic life cycle because the insect stage utilizes a cost-effective oxidative phosphorylation (OxPhos) to generate ATP, while bloodstream cells switch to aerobic glycolysis. Due to difficulties in acquiring enough parasites from the tsetse fly vector, the dynamics of the parasite's metabolic rewiring in the vector have remained obscure. Here, we took advantage of in vitro-induced differentiation to follow changes at the RNA, protein, and metabolite levels. This multi-omics and cell-based profiling showed an immediate redirection of electron flow from the cytochrome-mediated pathway to an alternative oxidase (AOX), an increase in proline consumption, elevated activity of complex II, and certain tricarboxylic acid (TCA) cycle enzymes, which led to mitochondrial membrane hyperpolarization and increased reactive oxygen species (ROS) levels. Interestingly, these ROS molecules appear to act as signaling molecules driving developmental progression because ectopic expression of catalase, a ROS scavenger, halted the in vitro-induced differentiation. Our results provide insights into the mechanisms of the parasite's mitochondrial rewiring and reinforce the emerging concept that mitochondria act as signaling organelles through release of ROS to drive cellular differentiation.


Assuntos
Metabolômica , Mitocôndrias/metabolismo , Trypanosoma brucei brucei/crescimento & desenvolvimento , Trypanosoma brucei brucei/metabolismo , Trifosfato de Adenosina/biossíntese , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Respiração Celular/efeitos dos fármacos , Transporte de Elétrons/efeitos dos fármacos , Elétrons , Glucose/farmacologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Redes e Vias Metabólicas/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Proteínas Mitocondriais/metabolismo , Oxirredução , Oxirredutases/metabolismo , Proteínas de Plantas/metabolismo , Prolina/metabolismo , Proteoma/metabolismo , Proteínas de Protozoários/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Transcriptoma/genética , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma brucei brucei/genética
3.
Proc Natl Acad Sci U S A ; 104(19): 7821-6, 2007 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-17483465

RESUMO

Adenosine-to-inosine editing in the anticodon of tRNAs is essential for viability. Enzymes mediating tRNA adenosine deamination in bacteria and yeast contain cytidine deaminase-conserved motifs, suggesting an evolutionary link between the two reactions. In trypanosomatids, tRNAs undergo both cytidine-to-uridine and adenosine-to-inosine editing, but the relationship between the two reactions is unclear. Here we show that down-regulation of the Trypanosoma brucei tRNA-editing enzyme by RNAi leads to a reduction in both C-to-U and A-to-I editing of tRNA in vivo. Surprisingly, in vitro, this enzyme can mediate A-to-I editing of tRNA and C-to-U deamination of ssDNA but not both in either substrate. The ability to use both DNA and RNA provides a model for a multispecificity editing enzyme. Notably, the ability of a single enzyme to perform two different deamination reactions also suggests that this enzyme still maintains specificities that would have been found in the ancestor deaminase, providing a first line of evidence for the evolution of editing deaminases.


Assuntos
Adenosina Desaminase/fisiologia , Citidina Desaminase/fisiologia , Edição de RNA , Adenosina/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Linhagem Celular , Citidina/metabolismo , Desaminação , Inosina/metabolismo , Dados de Sequência Molecular , Interferência de RNA , Uridina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA