Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38675647

RESUMO

This study aimed to develop multifunctional nanoplatforms for both cancer imaging and therapy using superparamagnetic iron oxide nanoparticles (SPIONs). Two distinct synthetic methods, reduction-precipitation (MR/P) and co-precipitation at controlled pH (MpH), were explored, including the assessment of the coating's influence, namely dextran and gold, on their magnetic properties. These SPIONs were further functionalized with gadolinium to act as dual T1/T2 contrast agents for magnetic resonance imaging (MRI). Parameters such as size, stability, morphology, and magnetic behavior were evaluated by a detailed characterization analysis. To assess their efficacy in imaging and therapy, relaxivity and hyperthermia experiments were performed, respectively. The results revealed that both synthetic methods lead to SPIONs with similar average size, 9 nm. Mössbauer spectroscopy indicated that samples obtained from MR/P consist of approximately 11-13% of Fe present in magnetite, while samples obtained from MpH have higher contents of 33-45%. Despite coating and functionalization, all samples exhibited superparamagnetic behavior at room temperature. Hyperthermia experiments showed increased SAR values with higher magnetic field intensity and frequency. Moreover, the relaxivity studies suggested potential dual T1/T2 contrast agent capabilities for the coated SPpH-Dx-Au-Gd sample, thus demonstrating its potential in cancer diagnosis.


Assuntos
Meios de Contraste , Nanopartículas Magnéticas de Óxido de Ferro , Imageamento por Ressonância Magnética , Nanopartículas de Magnetita , Nanomedicina Teranóstica , Nanopartículas Magnéticas de Óxido de Ferro/química , Imageamento por Ressonância Magnética/métodos , Meios de Contraste/química , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/uso terapêutico , Humanos , Ouro/química , Dextranos/química , Gadolínio/química , Propriedades de Superfície , Hipertermia Induzida/métodos , Tamanho da Partícula
2.
J Biophotonics ; 17(2): e202300249, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38010860

RESUMO

Denervation induces skeletal muscle atrophy due to the loss of control and feedback with the nervous system. Unfortunately, muscle atrophy only becomes evident days after the denervation event when it could be irreversible. Alternative diagnosis tools for early detection of denervation-induced muscle atrophy are, thus, required. In this work, we demonstrate how the combination of transient thermometry, a technique already used for early diagnosis of tumors, and infrared-emitting nanothermometers makes possible the in vivo detection of the onset of muscle atrophy at short (<1 day) times after a denervation event. The physiological reasons behind these experimental results have been explored by performing three dimensional numerical simulations based on the Pennes' bioheat equation. It is concluded that the alterations in muscle thermal dynamics at the onset of muscle atrophy are consequence of the skin perfusion increment caused by the alteration of peripheral nervous autonomous system. This work demonstrates the potential of infrared luminescence thermometry for early detection of diseases of the nervous system opening the venue toward the development of new diagnosis tools.


Assuntos
Luminescência , Termometria , Humanos , Atrofia Muscular/etiologia , Atrofia Muscular/patologia , Termometria/métodos , Denervação/efeitos adversos , Diagnóstico Precoce
3.
RSC Adv ; 12(55): 35989-36001, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36545116

RESUMO

The development of highly efficient, rapid, and recyclable nanocatalysts for effective elimination of toxic environmental contaminants remains a high priority in various industrial applications. Herein, we report the preparation of hybrid mesoporous gold-iron oxide nanoparticles (Au-IO NPs) via the nanocasting "inverse hard-templated replication" approach. Dispersed Au NPs were anchored on amine-functionalized iron oxide incorporated APMS (IO@APMS-amine), followed by etching of the silica template to afford hybrid mesoporous Au-IO NPs. The obtained nanoconstructs were fully characterized using electron microscopy, N2 physisorption, and various spectroscopic techniques. Owing to their magnetic properties, high surface areas, large pore volumes, and mesoporous nature (S BET = 124 m2 g-1, V pore = 0.33 cm3 g-1, and d pore = 4.5 nm), the resulting Au-IO mesostructures were employed for catalytic reduction of nitroarenes (i.e. nitrophenol and nitroaniline), two of the most common toxic organic pollutants. It was found that these Au-IO NPs act as highly efficient nanocatalysts showing exceptional stabilities (>3 months), enhanced catalytic efficiencies in very short times (∼100% conversions within only 25-60 s), and excellent recyclabilities (up to 8 cycles). The kinetic pseudo-first-order apparent reaction rate constants (k app) were calculated to be equal to 8.8 × 10-3 and 23.5 × 10-3 s-1 for 2-nitrophenol and 2-nitroaniline reduction, respectively. To our knowledge, this is considered one of the best and fastest Au-based nanocatalysts reported for the catalytic reduction of nitroarenes, promoted mainly by the synergistic cooperation of their high surface area, large pore volume, mesoporous nature, and enhanced Au-NP dispersions. The unique mesoporous hybrid Au-IO nanoconstructs synthesized here make them novel, stable, and approachable nanocatalyst platform for various catalytic industrial processes.

4.
Nanoscale ; 14(43): 16208-16219, 2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36281691

RESUMO

Optomagnetic nanofluids (OMNFs) are colloidal dispersions of nanoparticles (NPs) with combined magnetic and optical properties. They are especially appealing in biomedicine since they can be used as minimally invasive platforms for controlled hyperthermia treatment of otherwise difficultly accessible tumors such as intracranial ones. On the one hand, magnetic NPs act as heating mediators when subjected to alternating magnetic fields or light irradiation. On the other hand, suitably tailored luminescent NPs can provide a precise and remote thermal readout in real time. The combination of heating and thermometric properties allows, in principle, to precisely monitor the increase in the temperature of brain tumors up to the therapeutic level, without causing undesired collateral damage. In this work we demonstrate that this view is an oversimplification since it ignores the presence of relevant interactions between magnetic (γ-Fe2O3 nanoflowers) and luminescent nanoparticles (Ag2S NPs) that result in a detrimental alteration of their physicochemical properties. The magnitude of such interactions depends on the interparticle distance and on the surface properties of nanoparticles. Experiments performed in mouse brains (phantoms and ex vivo) revealed that OMNFs cannot induce relevant heating under alternating magnetic fields and fail to provide reliable temperature reading. In contrast, we demonstrate that the use of luminescent nanofluids (containing only Ag2S NPs acting as both photothermal agents and nanothermometers) stands out as a better alternative for thermally monitored hyperthermia treatment of brain tumors in small animal models.


Assuntos
Neoplasias Encefálicas , Hipertermia Induzida , Animais , Camundongos , Linhagem Celular Tumoral , Campos Magnéticos , Encéfalo , Neoplasias Encefálicas/terapia
5.
Artigo em Inglês | MEDLINE | ID: mdl-35848997

RESUMO

Functional colloidal nanoparticles capable of converting between various energy types are finding an increasing number of applications. One of the relevant examples concerns light-to-heat-converting colloidal nanoparticles that may be useful for localized photothermal therapy of cancers. Unfortunately, quantitative comparison and ranking of nanoheaters are not straightforward as materials of different compositions and structures have different photophysical and chemical properties and may interact differently with the biological environment. In terms of photophysical properties, the most relevant information to rank these nanoheaters is the light-to-heat conversion efficiency, which, along with information on the absorption capacity of the material, can be used to directly compare materials. In this work, we evaluate the light-to-heat conversion properties of 17 different nanoheaters belonging to different groups (plasmonic, semiconductor, lanthanide-doped nanocrystals, carbon nanocrystals, and metal oxides). We conclude that the light-to-heat conversion efficiency alone is not meaningful enough as many materials have similar conversion efficiencies─in the range of 80-99%─while they significantly differ in their extinction coefficient. We therefore constructed their qualitative ranking based on the external conversion efficiency, which takes into account the conventionally defined light-to-heat conversion efficiency and its absorption capacity. This ranking demonstrated the differences between the samples more meaningfully. Among the studied systems, the top-ranking materials were black porous silicon and CuS nanocrystals. These results allow us to select the most favorable materials for photo-based theranostics and set a new standard in the characterization of nanoheaters.

6.
Bioconjug Chem ; 33(5): 821-828, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35482594

RESUMO

We present a simple methodology to design a pretargeted drug delivery system, based on clickable anti-programmed death ligand 1 (anti-PD-L1) antibodies (Abs) and clickable bovine serum albumin (BSA) nanoparticles (NPs). Pretargeted drug delivery is based on the decoupling of a targeting moiety and a drug-delivering vector which can then react in vivo after separate injections. This may be key to achieve active targeting of drug-delivering NPs toward cancerous tissue. In pretargeted approaches, drug-delivering NPs were observed to accumulate in a higher amount in the targeted tissue due to shielding-related enhanced blood circulation and size-related enhanced tissue penetration. In this work, BSA NPs were produced using the solvent precipitation methodology that renders colloidally stable NPs, which were subsequently functionalized with a clickable moiety based on chlorosydnone (Cl-Syd). Those reactive groups are able to specifically react with dibenzocyclooctyne (DBCO) groups in a click-type fashion, reaching second-order reaction rate constants as high as 1.9 M-1·s-1, which makes this reaction highly suitable for in vivo applications. The presence of reactive Cl-Syd was demonstrated by reacting the functionalized NPs with a DBCO-modified sulfo-cyanine-5 dye. With this reaction, it was possible to infer the number of reactive moieties per NPs. Finally, and with the aim of demonstrating the suitability of this system to be used in pretargeted strategies, functionalized fluorescent NPs were used to label H358 cells with a clickable anti-PD-L1 Ab, applying the reaction between Cl-Syd and DBCO as corresponding clickable groups. The results of these experiments demonstrate the bio-orthogonality of the system to perform the reaction in vitro, in a period as short as 15 min.


Assuntos
Antígeno B7-H1 , Nanopartículas , Neoplasias , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/biossíntese , Antígeno B7-H1/imunologia , Linhagem Celular Tumoral , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Humanos , Imunoterapia , Terapia de Alvo Molecular , Nanopartículas/administração & dosagem , Nanopartículas/química , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Soroalbumina Bovina/administração & dosagem , Soroalbumina Bovina/química
7.
Light Sci Appl ; 11(1): 65, 2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35314670

RESUMO

The efficacy of photodynamic treatments of tumors can be significantly improved by using a new generation of nanoparticles that take advantage of the unique properties of the tumor microenvironment.

8.
Acta Biomater ; 142: 308-319, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35104657

RESUMO

We report the synthesis of plasmonic nanocapsules and the cellular responses they induce in 3D melanoma models for their perspective use as a photothermal therapeutic agent. The wall of the nanocapsules is composed of polyelectrolytes. The inner part is functionalized with discrete gold nanoislands. The cavity of the nanocapsules contains a fluorescent payload to show their ability for loading a cargo. The nanocapsules exhibit simultaneous two-photon luminescent, fluorescent properties and X-ray contrasting ability. The average fluorescence lifetime (τ) of the nanocapsules measured with FLIM (0.3 ns) is maintained regardless of the intracellular environment, thus proving their abilities for bioimaging of models such as 3D spheroids with a complex architecture. Their multimodal imaging properties are exploited for the first time to study tumorspheres cellular responses exposed to the nanocapsules. Specifically, we studied cellular uptake, toxicity, intracellular fate, generation of reactive oxygen species, and effect on the levels of hypoxia by using multi-photon and confocal laser scanning microscopy. Because of the high X-ray attenuation and atomic number of the gold nanostructure, we imaged the nanocapsule-cell interactions without processing the sample. We confirmed maintenance of the nanocapsules' geometry in the intracellular milieu with no impairment of the cellular ultrastructure. Furthermore, we observed the lack of cellular toxicity and no alteration in oxygen or reactive oxygen species levels. These results in 3D melanoma models contribute to the development of these nanocapsules for their exploitation in future applications as agents for imaging-guided photothermal therapy. STATEMENT OF SIGNIFICANCE: The novelty of the work is that our plasmonic nanocapsules are multimodal. They are responsive to X-ray and to multiphoton and single-photon excitation. This allowed us to study their interaction with 2D and 3D cellular structures and specifically to obtain information on tumor cell parameters such as hypoxia, reactive oxygen species, and toxicity. These nanocapsules will be further validated as imaging-guided photothermal probes.


Assuntos
Melanoma , Nanocápsulas , Linhagem Celular Tumoral , Ouro/química , Ouro/farmacologia , Humanos , Hipóxia , Melanoma/diagnóstico por imagem , Nanocápsulas/química , Espécies Reativas de Oxigênio
9.
Pharmaceutics ; 14(1)2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35057109

RESUMO

Ag2S nanoparticles are near-infrared (NIR) probes providing emission in a specific spectral range (~1200 nm), and superparamagnetic iron oxide nanoparticles (SPION) are colloidal systems able to respond to an external magnetic field. A disadvantage of Ag2S NPs is the attenuated luminescent properties are reduced in aqueous media and human fluids. Concerning SPION, the main drawback is the generation of undesirable clusters that reduce particle stability. Here, we fabricate biocompatible hybrid nanosystems combining Ag2S NPs and SPION by the electrospraying technique for drug delivery purposes. These nanostructures are composed of poly(lactic-co-glycolic acid) (PLGA) as the polymeric matrix in connection with both Ag2S NPs and SPIONs. Initially, we fabricate a hybrid colloidal nanosystem composed of Ag2S NPs in connection with PLGA (PLGA@Ag2S) by three different routes, showing good photoluminescent (PL) properties with relatively high average decay times. Then, we incorporate SPIONs, obtaining a PLGA polymeric matrix containing both Ag2S NPs and SPION (PLGA@Ag2S@SPION). Interestingly, in this hybrid system, the location of Ag2S NPs and SPIONs depends on the synthesis route performed during electrospraying. After a detailed characterization, we demonstrate the encapsulation and release capabilities, obtaining the kinetic release using a model chemotherapeutic drug (maslinic acid). Finally, we perform in vitro cytotoxicity assays using drug-loaded hybrid systems against several tumor cell lines.

10.
Adv Mater ; 33(30): e2100077, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34117667

RESUMO

Deliberate and local increase of the temperature within solid tumors represents an effective therapeutic approach. Thermal therapies embrace this concept leveraging the capability of some species to convert the absorbed energy into heat. To that end, magnetic hyperthermia (MHT) uses magnetic nanoparticles (MNPs) that can effectively dissipate the energy absorbed under alternating magnetic fields. However, MNPs fail to provide real-time thermal feedback with the risk of unwanted overheating and impeding on-the-fly adjustment of the therapeutic parameters. Localization of MNPs within a tissue in an accurate, rapid, and cost-effective way represents another challenge for increasing the efficacy of MHT. In this work, MNPs are combined with state-of-the-art infrared luminescent nanothermometers (LNTh; Ag2 S nanoparticles) in a nanocapsule that simultaneously overcomes these limitations. The novel optomagnetic nanocapsule acts as multimodal contrast agents for different imaging techniques (magnetic resonance, photoacoustic and near-infrared fluorescence imaging, optical and X-ray computed tomography). Most crucially, these nanocapsules provide accurate (0.2 °C resolution) and real-time subcutaneous thermal feedback during in vivo MHT, also enabling the attainment of thermal maps of the area of interest. These findings are a milestone on the road toward controlled magnetothermal therapies with minimal side effects.


Assuntos
Meios de Contraste/química , Nanopartículas Magnéticas de Óxido de Ferro/química , Nanocápsulas/química , Animais , Linhagem Celular Tumoral , Corantes Fluorescentes/química , Temperatura Alta , Humanos , Hipertermia Induzida , Raios Infravermelhos , Campos Magnéticos , Magnetismo , Camundongos , Imagem Óptica , Terapia Fototérmica , Compostos de Prata/química
11.
Adv Healthc Mater ; 10(10): e2002186, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33594792

RESUMO

The unique combination of physical and optical properties of silica (core)/gold (shell) nanoparticles (gold nanoshells) makes them especially suitable for biomedicine. Gold nanoshells are used from high-resolution in vivo imaging to in vivo photothermal tumor treatment. Furthermore, their large scattering cross-section in the second biological window (1000-1700 nm) makes them also especially adequate for molecular optical coherence tomography (OCT). In this work, it is demonstrated that, after suitable functionalization, gold nanoshells in combination with clinical OCT systems are capable of imaging damage in the myocardium following an infarct. Since both inflammation and apoptosis are two of the main mechanisms underlying myocardial damage after ischemia, such damage imaging is achieved by endowing gold nanoshells with selective affinity for the inflammatory marker intercellular adhesion molecule 1 (ICAM-1), and the apoptotic marker phosphatidylserine. The results here presented constitute a first step toward a fast, safe, and accurate diagnosis of damaged tissue within infarcted hearts at the molecular level by means of the highly sensitive OCT interferometric technique.


Assuntos
Infarto do Miocárdio , Nanoconchas , Ouro , Humanos , Infarto , Imagem Molecular , Infarto do Miocárdio/diagnóstico por imagem
12.
Eur J Pharm Biopharm ; 154: 228-235, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32707287

RESUMO

Malignant melanoma accounts for about 1% of all skin malignant tumors and represents the most aggressive and lethal form of skin cancer. Clinically, there exist different therapeutic options for melanoma treatment, such as surgery, chemotherapy, radiotherapy, photodynamic therapy and immunotherapy. However, serious adverse effects usually arise, and survival rates are still low because a high number of patients present relapses within 6-9 months after therapy. AS1411 is a G-quadruplex (G4) aptamer capable of tumor-specific recognition, since it binds to nucleolin, a multi-functional protein expressed in many different types of cancer cells. In this work, we present a novel drug delivery system composed of AS1411 and indocyanine green (ICG) to track its accumulation in tumoral cells in a melanoma mouse model. Using a simple supramolecular strategy, we conjugated the complex AS1411-ICG with C8 ligand, an acridine orange derivative with potential anticancer ligand. Then, we performed in vitro cytotoxicity experiments using the B16 mouse melanoma cell line, and in vivo experiments using a B16 mouse melanoma model to study biodistribution and histological changes. The circular dichroism (CD) data suggest that C8 does not affect the parallel G4 topology of AS1411-ICG, whereas it increases its thermal stability. Incubation of B16 melanoma cells with the AS1411-ICG complex associated with C8 increases the cytotoxicity compared with AS1411-ICG alone. From the in vivo studies, we conclude that both AS1411-ICG and AS1411-ICG-C8 presented the potential to accumulate preferentially in tumor tissues. Moreover, these compounds seem to be efficiently removed from the mice's bodies through kidney clearance. In summary, these results suggest that these complexes derived from AS1411 aptamer could act as a delivery system of ligands with antitumoral activity for in vivo melanoma therapy.


Assuntos
Aptâmeros de Nucleotídeos/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Verde de Indocianina/metabolismo , Melanoma/metabolismo , Oligodesoxirribonucleotídeos/metabolismo , Neoplasias Cutâneas/metabolismo , Animais , Aptâmeros de Nucleotídeos/administração & dosagem , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Feminino , Humanos , Verde de Indocianina/administração & dosagem , Melanoma/tratamento farmacológico , Melanoma Experimental , Camundongos , Camundongos Endogâmicos C57BL , Oligodesoxirribonucleotídeos/administração & dosagem , Neoplasias Cutâneas/tratamento farmacológico
13.
Nanoscale ; 11(41): 19251-19264, 2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31560003

RESUMO

Research on near-infrared (NIR) bioimaging has progressed very quickly in the past few years, as fluorescence imaging is reaching a credible implementation as a preclinical technique. The applications of NIR bioimaging in theranostics have contributed to its increasing impact. This has brought about the development of novel technologies and, simultaneously, of new contrast agents capable of acting as efficient NIR optical probes. Among these probes, Ag2S nanoparticles (NPs) have attracted increasing attention due to their temperature-sensitive NIR-II emission, which can be exploited for deep-tissue imaging and thermometry, and their heat delivery capabilities. This multifunctionality makes Ag2S NPs ideal candidates for theranostics. This review presents a critical analysis of the synthesis routes, properties and optical features of Ag2S NPs. We also discuss the latest and most remarkable achievements enabled by these NPs in preclinical imaging and theranostics, together with a critical assessment of their potential to face forthcoming challenges in biomedicine.


Assuntos
Nanomedicina , Nanopartículas/química , Compostos de Prata/química , Animais , Técnicas Biossensoriais/métodos , Humanos , Neoplasias/diagnóstico por imagem , Espectroscopia de Luz Próxima ao Infravermelho
14.
Adv Biosyst ; 3(10): e1900082, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-32648719

RESUMO

Chemicals capable of producing structural and chemical changes on cells are used to treat diseases (e.g., cancer). Further development and optimization of chemotherapies require thorough knowledge of the effect of the chemical on the cellular structure and dynamics. This involves studying, in a noninvasive way, the properties of individual cells after drug administration. Intracellular viscosity is affected by chemical treatments and it can be reliably used to monitor chemotherapies at the cellular level. Here, cancer cell monitoring during chemotherapeutic treatments is demonstrated using intracellular allocated upconverting nanorockers. A simple analysis of the polarized visible emission of a single particle provides a real-time readout of its rocking dynamics that are directly correlated to the cytoplasmic viscosity. Numerical simulations and immunodetection are used to correlate the measured intracellular viscosity alterations to the changes produced in the cytoskeleton of cancer cells by anticancer drugs (colchicine and Taxol). This study evidences the possibility of monitoring cellular properties under an external chemical stimulus for the study and development of new treatments. Moreover, it provides the biomedical community with new tools to study intracellular dynamics and cell functioning.


Assuntos
Antineoplásicos , Citoplasma/efeitos dos fármacos , Monitoramento de Medicamentos/métodos , Nanoestruturas , Viscosidade/efeitos dos fármacos , Antineoplásicos/química , Antineoplásicos/farmacologia , Citoesqueleto/efeitos dos fármacos , Células HeLa , Humanos , Microscopia de Fluorescência , Nanoestruturas/química
15.
Nanoscale ; 10(2): 791-799, 2018 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-29256568

RESUMO

Lanthanide-doped upconverting nanoparticles (UCNPs) have been studied for diverse biomedical applications due to their inherent ability to convert near-infrared (NIR) excitation light to higher energies (spanning the ultraviolet, visible, and NIR regions). To explore additional functionalities, rational combination with other optically active nanostructures may lead to the development of new multimodal nanoplatforms with theranostic (therapy and diagnostic) capabilities. Here, we develop a nanocomposite consisting of NaGdF4:Er3+, Yb3+ UCNPs, mesoporous silica (SiO2), gold nanorods (GNRs) and a photosensitizer, with integrated functionalities including luminescence imaging, photothermal generation, nanothermometry and photodynamic effects. Under 980 nm irradiation, GNRs and UCNPs are simultaneously excited due to the overlap between the surface plasmon resonance of the GNRs and the absorption of the UCNPs leading to plasmonic enhancement of the upconverted luminescence, while concomitantly creating a temperature gradient. The temperature increase can be determined from the intensity ratio of the upconverted green emission of the UCNPs. Finally, a photosensitizer, zinc phthalocyanine, was loaded into the mesoporous SiO2. Upon laser irradiation, the upconverted visible light subsequently activates the photosensitizer to release reactive oxygen species. The multifunctional GNR@SiO2@UCNPs nanocomposites showed strong luminescence signal when incubated in HeLa cervical cancer cells, making them ideal bioprobes for future theranostic applications.

16.
Adv Mater ; 28(12): 2421-6, 2016 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-26821941

RESUMO

3D optical manipulation of a thermal-sensing upconverting particle allows for the determination of the extension of the thermal gradient created in the surroundings of a plasmonic-mediated photothermal-treated HeLa cancer cell.


Assuntos
Nanopartículas/química , Európio/química , Fluoretos/química , Ouro/química , Células HeLa , Humanos , Lasers , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência , Nanopartículas/metabolismo , Nanotubos/química , Temperatura , Itérbio/química , Ítrio/química
17.
Small ; 10(6): 1141-54, 2014 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-24123958

RESUMO

The future perspective of fluorescence imaging for real in vivo application are based on novel efficient nanoparticles which is able to emit in the second biological window (1000-1400 nm). In this work, the potential application of Nd(3+) -doped LaF(3) (Nd(3+) :LaF(3) ) nanoparticles is reported for fluorescence bioimaging in both the first and second biological windows based on their three main emission channels of Nd(3+) ions: (4) F(3/2) →(4) I(9/2) , (4) F(3/2) →(4) I(11/2) and (4) F(3/2) →(4) I(13/2) that lead to emissions at around 910, 1050, and 1330 nm, respectively. By systematically comparing the relative emission intensities, penetration depths and subtissue optical dispersion of each transition we propose that optimum subtissue images based on Nd(3+) :LaF(3) nanoparticles are obtained by using the (4) F3/2 →(4) I11/2 (1050 nm) emission band (lying in the second biological window) instead of the traditionally used (4) F(3/2) →(4) I(9/2) (910 nm, in the first biological window). After determining the optimum emission channel, it is used to obtain both in vitro and in vivo images by the controlled incorporation of Nd(3+) :LaF(3) nanoparticles in cancer cells and mice. Nd(3+) :LaF(3)nanoparticles thus emerge as very promising fluorescent nanoprobes for bioimaging in the second biological window.


Assuntos
Diagnóstico por Imagem/métodos , Fluoretos , Lantânio , Nanopartículas , Neodímio , Absorção , Administração Intravenosa , Animais , Sobrevivência Celular , Galinhas , Fluorescência , Fluoretos/administração & dosagem , Células HeLa , Humanos , Injeções Subcutâneas , Lantânio/administração & dosagem , Camundongos , Nanopartículas/administração & dosagem , Nanopartículas/ultraestrutura , Neodímio/administração & dosagem , Imagem Óptica , Tamanho da Partícula , Soluções
18.
Nanomedicine (Lond) ; 8(3): 379-88, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23199286

RESUMO

AIM: This article demonstrates how controlled hyperthermia at the cellular level can be achieved. MATERIALS & METHODS: The method is based on the simultaneous intracellular incorporation of fluorescence nanothermometers (CdSe quantum dots) and metallic nanoheaters (gold nanorods). RESULTS: Real-time spectral analysis of the quantum dot emission provides a detailed feedback about the intracellular thermal loading caused by gold nanorods excited at the plasmon frequency. Based on this approach, thermal dosimetry is assessed in such a way that the infrared laser (heating) power required to achieve catastrophic intracellular temperature increments in cancer cells is identified. CONCLUSIONS: This pure optical method emerges as a new and promising guide for the development of infrared hyperthermia therapies with minimal invasiveness.


Assuntos
Fenômenos Fisiológicos Celulares , Febre , Nanotecnologia , Termômetros , Compostos de Cádmio/química , Fluorescência , Ouro/química , Células HeLa , Humanos , Nanotubos/química , Pontos Quânticos , Compostos de Selênio/química
19.
Cancers (Basel) ; 4(4): 1067-105, 2012 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-24213500

RESUMO

During the last decade inorganic luminescent nanoparticles that emit visible light under near infrared (NIR) excitation (in the biological window) have played a relevant role for high resolution imaging of cancer. Indeed, semiconductor quantum dots (QDs) and metal nanoparticles, mostly gold nanorods (GNRs), are already commercially available for this purpose. In this work we review the role which is being played by a relatively new class of nanoparticles, based on lanthanide ion doped nanocrystals, to target and image cancer cells using upconversion fluorescence microscopy. These nanoparticles are insulating nanocrystals that are usually doped with small percentages of two different rare earth (lanthanide) ions: The excited donor ions (usually Yb3+ ion) that absorb the NIR excitation and the acceptor ions (usually Er3+, Ho3+ or Tm3+), that are responsible for the emitted visible (or also near infrared) radiation. The higher conversion efficiency of these nanoparticles in respect to those based on QDs and GNRs, as well as the almost independent excitation/emission properties from the particle size, make them particularly promising for fluorescence imaging. The different approaches of these novel nanoparticles devoted to "in vitro" and "in vivo" cancer imaging, selective targeting and treatment are examined in this review.

20.
ACS Nano ; 5(11): 8665-71, 2011 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-21957870

RESUMO

In this study, we report on the remarkable two-photon excited fluorescence efficiency in the "biological window" of CaF(2):Tm(3+),Yb(3+) nanoparticles. On the basis of the strong Tm(3+) ion emission (at around 800 nm), tissue penetration depths as large as 2 mm have been demonstrated, which are more than 4 times those achievable based on the visible emissions in comparable CaF(2):Er(3+),Yb(3+) nanoparticles. The outstanding penetration depth, together with the fluorescence thermal sensitivity demonstrated here, makes CaF(2):Tm(3+),Yb(3+) nanoparticles ideal candidates as multifunctional nanoprobes for high contrast and highly penetrating in vivo fluorescence imaging applications.


Assuntos
Fluoreto de Cálcio/química , Raios Infravermelhos , Imagem Molecular/métodos , Nanopartículas/química , Fótons , Túlio/química , Itérbio/química , Sobrevivência Celular/efeitos dos fármacos , Corantes Fluorescentes/química , Corantes Fluorescentes/toxicidade , Células HeLa , Humanos , Teste de Materiais , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Nanopartículas/toxicidade , Tamanho da Partícula , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA