Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1238221, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37809058

RESUMO

Introduction: Previous work in humans has demonstrated that both innate and adaptive immune signaling pathways contribute to the pathogenesis of idiopathic inflammatory myopathy (IIM), a systemic autoimmune disease targeting muscle as well as extra-muscular organs. To better define interactive signaling networks in IIM, we characterized the cellular phenotype and transcriptomic profiles of muscle-infiltrating cells in our established murine model of histidyl-tRNA synthetase (HRS)-induced myositis. Methods: Myositis was induced in wild type (WT) and various congenic/mutant strains of C57BL/6 mice through intramuscular immunization with recombinant HRS. Histopathological, immunohistochemical, flow cytometric, and transcriptomic assessments were used to characterize the functional relationship between muscle-infiltrating cell populations in these strains lacking different components of innate and/or adaptive immune signaling. Results: RAG1 KO mice developed markedly reduced muscle inflammation relative to WT mice, demonstrating a key requirement for T cells in driving HRS-induced myositis. While the reduction of mononuclear cell infiltrates in CD4-Cre.MyD88fl/fl conditional knockout mice and OT-II TCR transgenic mice highlighted roles for both innate and TCR-mediated/adaptive immune signaling in T cells, diminished inflammation in Lyz2-Cre.MyD88fl/fl conditional knockout mice underscored the importance of macrophage/myeloid cell populations in supporting T cell infiltration. Single cell RNA sequencing-based clustering of muscle-infiltrating subpopulations and associated pathway analyses showed that perturbations of T cell signaling/function alter the distribution and phenotype of macrophages, fibroblasts, and other non-lymphoid cell populations contributing to HRS-induced myositis. Discussion: Overall, HRS-induced myositis reflects the complex interplay between multiple cell types that collectively drive a TH1-predominant, pro-inflammatory tissue phenotype requiring antigen-mediated activation of both MyD88- and TCR-dependent T cell signaling pathways.


Assuntos
Histidina-tRNA Ligase , Miosite , Humanos , Camundongos , Animais , Linfócitos T , Camundongos Endogâmicos C57BL , Imunidade Adaptativa , Macrófagos , Inflamação , Camundongos Knockout , Receptores de Antígenos de Linfócitos T
2.
Arthritis Res Ther ; 25(1): 211, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37885040

RESUMO

BACKGROUND: Rheumatoid arthritis is a chronic systemic autoimmune disease that involves transformation of the lining of synovial joints into an invasive and destructive tissue. Synovial fibroblasts become transformed, invading and destroying the bone and cartilage of the affected joint(s). Due to the significant role these cells play in the progression of the disease process, developing a therapeutic strategy to target and inhibit their invasive destructive nature could help patients who are afflicted with this debilitating disease. Gingival-derived mesenchymal stem cells are known to possess immunomodulatory properties and have been studied extensively as potential cell-based therapeutics for several autoimmune disorders. METHODS: A chimeric human/mouse model of synovitis was created by surgically implanting SCID mice with a piece of human articular cartilage surrounded by RASF. Mice were injected once with either GMSC or GMSCExo at 5-7 days post-implantation. Histology and IHC were used to assess RASF invasion of the cartilage. Flow cytometry was used to understand the homing ability of GMSC in vivo and the incidence of apoptosis of RASF in vitro. RESULTS: We demonstrate that both GMSC and GMSCExo are potent inhibitors of the deleterious effects of RASF. Both treatments were effective in inhibiting the invasive destructive properties of RASF as well as the potential for these cells to migrate to secondary locations and attack the cartilage. GMSC home to the site of the implant and induce programmed cell death of the RASF. CONCLUSIONS: Our results indicate that both GMSC and GMSCExo can block the pathological effects of RASF in this chimeric model of RA. A single dose of either GMSC or GMSCExo can inhibit the deleterious effects of RASF. These treatments can also block the invasive migration of the RASF, suggesting that they can inhibit the spread of RA to other joints. Because the gingival tissue is harvested with little difficulty, relatively small amounts of tissue are required to expand the cells, the simple in vitro expansion process, and the increasing technological advances in the production of therapeutic exosomes, we believe that GMSCExo are excellent candidates as a potential therapeutic for RA.


Assuntos
Artrite Reumatoide , Exossomos , Células-Tronco Mesenquimais , Humanos , Animais , Camundongos , Membrana Sinovial/metabolismo , Exossomos/metabolismo , Células Cultivadas , Camundongos SCID , Artrite Reumatoide/metabolismo , Células-Tronco Mesenquimais/metabolismo , Fibroblastos/metabolismo
3.
Front Immunol ; 14: 1090177, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38939646

RESUMO

Introduction: Distinct, disease-associated intracellular miRNA (miR) expression profiles have been observed in peripheral blood mononuclear cells (PBMCs) of systemic lupus erythematous (SLE) patients. Additionally, we have identified novel estrogenic responses in PBMCs from SLE patients and demonstrated that estrogen upregulates toll-like receptor (TLR)7 and TLR8 expression. TLR7 and TLR8 bind viral-derived single-stranded RNA to stimulate innate inflammatory responses, but recent studies have shown that miR-21, mir-29a, and miR-29b can also bind and activate these receptors when packaged and secreted in extracellular vesicles (EVs). The objective of this study was to evaluate the association of EV-encapsulated small RNA species in SLE and examine the therapeutic approach of miR inhibition in humanized mice. Methods: Plasma-derived EVs were isolated from SLE patients and quantified. RNA was then isolated and bulk RNA-sequencing reads were analyzed. Also, PBMCs from active SLE patients were injected into immunodeficient mice to produce chimeras. Prior to transfer, the PBMCs were incubated with liposomal EVs containing locked nucleic acid (LNA) antagonists to miR-21, mir-29a, and miR-29b. After three weeks, blood was collected for both immunophenotyping and cytokine analysis; tissue was harvested for histopathological examination. Results: EVs were significantly increased in the plasma of SLE patients and differentially expressed EV-derived small RNA profiles were detected compared to healthy controls, including miR-21, mir-29a, and miR-29b. LNA antagonists significantly reduced proinflammatory cytokines and histopathological infiltrates in the small intestine, liver, and kidney, as demonstrated by H&E-stained tissue sections and immunohistochemistry measuring human CD3. Discussion: These data demonstrate distinct EV-derived small RNA signatures representing SLE-associated biomarkers. Moreover, targeting upregulated EV-encapsulated miR signaling by antagonizing miRs that may bind to TLR7 and TLR8 reveals a novel therapeutic opportunity to suppress autoimmune-mediated inflammation and pathogenesis in SLE.


Assuntos
Modelos Animais de Doenças , Vesículas Extracelulares , Leucócitos Mononucleares , Lúpus Eritematoso Sistêmico , MicroRNAs , Receptor 7 Toll-Like , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/metabolismo , Humanos , Animais , MicroRNAs/genética , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/imunologia , Camundongos , Feminino , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/imunologia , Receptor 7 Toll-Like/metabolismo , Receptor 7 Toll-Like/genética , Inflamação/imunologia , Receptor 8 Toll-Like/metabolismo , Receptor 8 Toll-Like/genética , Adulto , Masculino , Pessoa de Meia-Idade , Camundongos SCID
4.
Pharmaceuticals (Basel) ; 15(12)2022 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-36559029

RESUMO

Aromatase Inhibitors (AIs) block estrogen production and improve survival in patients with hormone-receptor-positive breast cancer. However, half of patients develop aromatase-inhibitor-induced arthralgia (AIIA), which is characterized by inflammation of the joints and the surrounding musculoskeletal tissue. To create a platform for future interventional strategies, our objective was to characterize a novel animal model of AIIA. Female BALB/C-Tg(NFκB-RE-luc)-Xen mice, which have a firefly luciferase NFκB reporter gene, were oophorectomized and treated with an AI (letrozole). Bioluminescent imaging showed significantly enhanced NFκB activation with AI treatment in the hind limbs. Moreover, an analysis of the knee joints and legs via MRI showed enhanced signal detection in the joint space and the surrounding tissue. Surprisingly, the responses observed with AI treatment were independent of oophorectomy, indicating that inflammation is not mediated by physiological estrogen levels. Histopathological and pro-inflammatory cytokine analyses further demonstrated the same trend, as tenosynovitis and musculoskeletal infiltrates were detected in all mice receiving AI, and serum cytokines were significantly upregulated. Human PBMCs treated with letrozole/estrogen combinations did not demonstrate an AI-specific gene expression pattern, suggesting AIIA-mediated pathogenesis through other cell types. Collectively, these data identify an AI-induced stimulation of disease pathology and suggest that AIIA pathogenesis may not be mediated by estrogen deficiency, as previously hypothesized.

5.
Sci Rep ; 12(1): 152, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34996983

RESUMO

The gut microbiota (GM) exerts a strong influence over the host immune system and dysbiosis of this microbial community can affect the clinical phenotype in chronic inflammatory conditions. To explore the role of the GM in lupus nephritis, we colonized NZM2410 mice with Segmented Filamentous Bacteria (SFB). Gut colonization with SFB was associated with worsening glomerulonephritis, glomerular and tubular immune complex deposition and interstitial inflammation compared to NZM2410 mice free of SFB. With SFB colonization mice experienced an increase in small intestinal lamina propria Th17 cells and group 3 innate lymphoid cells (ILC3s). However, although serum IL-17A expression was elevated in these mice, Th17 cells and ILC3s were not detected in the inflammatory infiltrate in the kidney. In contrast, serum and kidney tissue expression of the macrophage chemoattractants MCP-1 and CXCL1 were significantly elevated in SFB colonized mice. Furthermore, kidney infiltrating F4/80+CD206+M2-like macrophages were significantly increased in these mice. Evidence of increased gut permeability or "leakiness" was also detected in SFB colonized mice. Finally, the intestinal microbiome of SFB colonized mice at 15 and 30 weeks of age exhibited dysbiosis when compared to uncolonized mice at the same time points. Both microbial relative abundance as well as biodiversity of colonized mice was found to be altered. Collectively, SFB gut colonization in the NZM2410 mouse exacerbates kidney disease, promotes kidney M2-like macrophage infiltration and overall intestinal microbiota dysbiosis.


Assuntos
Bactérias/crescimento & desenvolvimento , Microbioma Gastrointestinal , Intestinos/microbiologia , Rim/imunologia , Nefrite Lúpica/microbiologia , Macrófagos/imunologia , Animais , Bactérias/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Disbiose , Feminino , Imunidade Inata , Mediadores da Inflamação/metabolismo , Intestinos/imunologia , Intestinos/metabolismo , Intestinos/patologia , Rim/metabolismo , Rim/patologia , Nefrite Lúpica/imunologia , Nefrite Lúpica/metabolismo , Nefrite Lúpica/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos Endogâmicos C57BL , Fenótipo , Células Th17/imunologia , Células Th17/metabolismo
6.
PLoS One ; 15(10): e0237520, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33002030

RESUMO

OBJECTIVES: Gout is the most prevalent inflammatory arthritis. To study the effects of regular physical activity and exercise intensity on inflammation and clinical outcome, we examined inflammatory pathogenesis in an acute model of murine gout and analyzed human gout patient clinical data as a function of physical activity. METHODS: NF-κB-luciferase reporter mice were organized into four groups and exercised at 0 m/min (non-exercise), 8 m/min (low-intensity), 11 m/min (moderate-intensity), and 15 m/min (high-intensity) for two weeks. Mice subsequently received intra-articular monosodium urate (MSU) crystal injections (0.5mg) and the inflammatory response was analyzed 15 hours later. Ankle swelling, NF-κB activity, histopathology, and tissue infiltration by macrophages and neutrophils were measured. Toll-like receptor (TLR)2 was quantified on peripheral monocytes/neutrophils by flow cytometry and both cytokines and chemokines were measured in serum or synovial aspirates. Clinical data and questionnaires accessing overall physical activity levels were collected from gout patients. RESULTS: Injection of MSU crystals produced a robust inflammatory response with increased ankle swelling, NF-κB activity, and synovial infiltration by macrophages and neutrophils. These effects were partially mitigated by low and moderate-intensity exercise. Furthermore, IL-1ß was decreased at the site of MSU crystal injection, TLR2 expression on peripheral neutrophils was downregulated, and expression of CXCL1 in serum was suppressed with low and moderate-intensity exercise. Conversely, the high-intensity exercise group closely resembled the non-exercised control group by nearly all metrics of inflammation measured in this study. Physically active gout patients had significantly less flares/yr, decreased C-reactive protein (CRP) levels, and lower pain scores relative to physically inactive patients. CONCLUSIONS: Regular, moderate physical activity can produce a quantifiable anti-inflammatory effect capable of partially mitigating the pathologic response induced by intra-articular MSU crystals by downregulating TLR2 expression on circulating neutrophils and suppressing systemic CXCL1. Low and moderate-intensity exercise produces this anti-inflammatory effect to varying degrees, while high-intensity exercise provides no significant difference in inflammation compared to non-exercising controls. Consistent with the animal model, gout patients with higher levels of physical activity have more favorable prognostic data. Collectively, these data suggest the need for further research and may be the foundation to a future paradigm-shift in conventional exercise recommendations provided by Rheumatologists to gout patients.


Assuntos
Quimiocina CXCL1/sangue , Gota/terapia , Inflamação/prevenção & controle , Condicionamento Físico Animal , Receptor 2 Toll-Like/sangue , Animais , Modelos Animais de Doenças , Regulação para Baixo , Exercício Físico/fisiologia , Feminino , Gota/sangue , Gota/patologia , Humanos , Inflamação/sangue , Inflamação/patologia , Interleucina-1beta/sangue , Interleucina-1beta/metabolismo , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Neutrófilos/metabolismo , Neutrófilos/patologia , Dor/prevenção & controle , Prognóstico , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia
7.
Front Immunol ; 10: 2519, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31803174

RESUMO

Gout is characterized by attacks of arthritis with hyperuricemia and monosodium urate (MSU) crystal-induced inflammation within joints. Innate immune responses are the primary drivers for tissue destruction and inflammation in gout. MSU crystals engage the Nlrp3 inflammasome, leading to the activation of caspase-1 and production of IL-1ß and IL-18 within gout-affected joints, promoting the influx of neutrophils and monocytes. Here, we show that caspase-11-/- mice and their derived macrophages produce significantly reduced levels of gout-specific cytokines including IL-1ß, TNFα, IL-6, and KC, while others like IFNγ and IL-12p70 are not altered. IL-1ß induces the expression of caspase-11 in an IL-1 receptor-dependent manner in macrophages contributing to the priming of macrophages during sterile inflammation. The absence of caspase-11 reduced the ability of macrophages and neutrophils to migrate in response to exogenously injected KC in vivo. Notably, in vitro, caspase-11-/- neutrophils displayed random migration in response to a KC gradient when compared to their WT counterparts. This phenotype was associated with altered cofilin phosphorylation. Unlike their wild-type counterparts, caspase-11-/- neutrophils also failed to produce neutrophil extracellular traps (NETs) when treated with MSU. Together, this is the first report demonstrating that caspase-11 promotes neutrophil directional trafficking and function in an acute model of gout. Caspase-11 also governs the production of inflammasome-dependent and -independent cytokines from macrophages. Our results offer new, previously unrecognized functions for caspase-11 in macrophages and neutrophils that may apply to other neutrophil-mediated disease conditions besides gout.


Assuntos
Fatores de Despolimerização de Actina/metabolismo , Artrite Gotosa/etiologia , Artrite Gotosa/metabolismo , Artrite Gotosa/patologia , Caspases Iniciadoras/metabolismo , Quimiotaxia/imunologia , Armadilhas Extracelulares/imunologia , Neutrófilos/imunologia , Doença Aguda , Animais , Biomarcadores , Caspases Iniciadoras/genética , Quimiotaxia/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças , Armadilhas Extracelulares/metabolismo , Expressão Gênica , Imuno-Histoquímica , Imunofenotipagem , Inflamassomos/metabolismo , Mediadores da Inflamação , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Neutrófilos/metabolismo , Fosforilação , Proteínas Quinases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Transdução de Sinais
8.
J Biol Chem ; 293(22): 8394-8409, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29618516

RESUMO

High-mobility group box 1 (HMGB1) is a chromatin-associated protein that, in response to stress or injury, translocates from the nucleus to the extracellular milieu, where it functions as an alarmin. HMGB1's function is in part determined by the complexes (HMGB1c) it forms with other molecules. However, structural modifications in the HMGB1 polypeptide that may regulate HMGB1c formation have not been previously described. In this report, we observed high-molecular weight, denaturing-resistant HMGB1c in the plasma and peripheral blood mononuclear cells of individuals with systemic lupus erythematosus (SLE) and, to a much lesser extent, in healthy subjects. Differential HMGB1c levels were also detected in mouse tissues and cultured cells, in which these complexes were induced by endotoxin or the immunological adjuvant alum. Of note, we found that HMGB1c formation is catalyzed by the protein-cross-linking enzyme transglutaminase-2 (TG2). Cross-link site mapping and MS analysis revealed that HMGB1 can be cross-linked to TG2 as well as a number of additional proteins, including human autoantigens. These findings have significant functional implications for studies of cellular stress responses and innate immunity in SLE and other autoimmune disease.


Assuntos
Autoantígenos/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Proteína HMGB1/metabolismo , Leucócitos Mononucleares/metabolismo , Lúpus Eritematoso Sistêmico/metabolismo , Transglutaminases/metabolismo , Autoantígenos/imunologia , Células Cultivadas , Proteínas de Ligação ao GTP/imunologia , Proteína HMGB1/imunologia , Humanos , Leucócitos Mononucleares/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/patologia , Peso Molecular , Proteína 2 Glutamina gama-Glutamiltransferase , Especificidade por Substrato , Transglutaminases/imunologia
9.
Front Immunol ; 8: 526, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28539924

RESUMO

Since being discovered over half a century ago, mesenchymal stem cells (MSCs) have been investigated extensively to characterize their cellular and physiological influences. MSCs have been shown to possess immunosuppressive capacity through inhibiting lymphocyte activation/proliferation and proinflammatory cytokine secretion while simultaneously demonstrating limited allogenic reactivity, which subsequently led to the evaluation of therapeutic feasibility to treat inflammatory diseases. Although regulatory constraints have restricted MSC development pharmacologically, limited clinical studies have shown encouraging results using MSC infusions to treat systemic lupus erythematosus (SLE); but, more trials will have to be performed to conclusively determine the clinical efficacy of MSCs to treat SLE. Moreover, there are some data to suggest that MSCs possess tumorigenic potential and that the immunosuppressive influence can be dramatically affected by both donor variability and ex vivo expansion. Given that recent studies have found that the immunosuppressive effects of MSCs are a result, at least in part, to extracellular vesicle (EV) secretion, the use of MSC-derived EVs has been suggested as a cell-free therapeutic alternative. Despite the positive data observed using EVs isolated from human MSCs to suppress inflammatory responses in vitro and in inhibiting autoimmune disease pathogenesis in preclinical work, there are no studies to date examining EVs from MSCs to treat SLE in humans or animal models. Considering that EVs are not subject to the strict regulatory constraints of stem cell-based pharmacological development and are more readily standardized with regard to industrial-scale production and storage, this review outlines the anti-inflammatory biology of MSCs and the scientific evidence supporting the potential use of EVs derived from human MSCs to treat patients with SLE.

10.
Clin Immunol ; 176: 12-22, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28039018

RESUMO

Recent studies implicate innate immunity to systemic lupus erythematosus (SLE) pathogenesis. Toll-like receptor (TLR)8 is estrogen-regulated and binds viral ssRNA to stimulate innate immune responses, but recent work indicates that microRNA (miR)-21 within extracellular vesicles (EVs) can also trigger this receptor. Our objective was to examine TLR8 expression/activation to better understand sex-biased responses involving TLR8 in SLE. Our data identify an estrogen response element that promotes STAT1 expression and demonstrate STAT1-dependent transcriptional activation of TLR8 with estrogen stimulation. In lieu of viral ssRNA activation, we explored EV-encapsulated miR-21 as an endogenous ligand and observed induction of both TLR8 and cytokine expression in vitro. Moreover, extracellular miR detection was found predominantly within EVs. Thus, just as a cytokine or chemokine, EV-encapsulated miR-21 can act as an inflammatory signaling molecule, or miRokine, by virtue of being an endogenous ligand of TLR8. Collectively, our data elucidates a novel innate inflammatory pathway in SLE.


Assuntos
Estrogênios/metabolismo , Lúpus Eritematoso Sistêmico/metabolismo , MicroRNAs/metabolismo , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais/fisiologia , Receptor 8 Toll-Like/metabolismo , Linhagem Celular Tumoral , Quimiocinas/metabolismo , Humanos , Imunidade Inata/imunologia , Inflamação/imunologia , Inflamação/metabolismo , Ligantes , Lúpus Eritematoso Sistêmico/imunologia , Células MCF-7
11.
PLoS One ; 9(11): e111559, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25369140

RESUMO

Despite the widespread use of curcumin for centuries in Eastern medicine as an anti-inflammatory agent, its molecular actions and therapeutic viability have only recently been explored. While curcumin does have potential therapeutic efficacy, both solubility and bioavailability must be improved before it can be more successfully translated to clinical care. We have previously reported a novel formulation of nano-emulsion curcumin (NEC) that achieves significantly greater plasma concentrations in mice after oral administration. Here, we confirm the immunosuppressive effects of NEC in vivo and further examine its molecular mechanisms to better understand therapeutic potential. Using transgenic mice harboring an NFκB-luciferase reporter gene, we demonstrate a novel application of this in vivo inflammatory model to test the efficacy of NEC administration by bioluminescent imaging and show that LPS-induced NFκB activity was suppressed with NEC compared to an equivalent amount of curcumin in aqueous suspension. Administration of NEC by oral gavage resulted in a reduction of blood monocytes, decreased levels of both TLR4 and RAGE expression, and inhibited secretion of MCP-1. Mechanistically, curcumin blocked LPS-induced phosphorylation of the p65 subunit of NFκB and IκBα in murine macrophages. In a mouse model of peritonitis, NEC significantly reduced macrophage recruitment, but not T-cell or B-cell levels. In addition, curcumin treatment of monocyte derived cell lines and primary human macrophages in vitro significantly inhibited cell migration. These data demonstrate that curcumin can suppress inflammation by inhibiting macrophage migration via NFκB and MCP-1 inhibition and establish that NEC is an effective therapeutic formulation to increase the bioavailability of curcumin in order to facilitate this response.


Assuntos
Anti-Inflamatórios/administração & dosagem , Curcumina/administração & dosagem , Macrófagos/efeitos dos fármacos , NF-kappa B/imunologia , Administração Oral , Animais , Anti-Inflamatórios/farmacologia , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Curcumina/farmacologia , Portadores de Fármacos/química , Emulsões/química , Humanos , Lipopolissacarídeos/imunologia , Macrófagos/citologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Transdução de Sinais/efeitos dos fármacos
12.
Clin Immunol ; 151(1): 66-77, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24525049

RESUMO

Females of child-bearing age are more resistant to infectious disease and have an increased risk of systemic lupus erythematosus (SLE). We hypothesized that estrogen-induced gene expression could establish an immunoactivated state which would render enhanced defense against infection, but may be deleterious in autoimmune development. Using peripheral blood mononuclear cells (PBMCs), we demonstrate enhanced responses with immunogen stimulation in the presence of 17ß-estradiol (E2) and gene array analyses reveal toll-like receptor 8 (TLR8) as an E2-responsive candidate gene. TLR8 expression levels are up-regulated in SLE and PBMCs stimulated with TLR8 agonist display a female sex-biased, E2-sensitive response. Moreover, we identify a putative ERα-binding region near the TLR8 locus and blocking ERα expression significantly decreases E2-mediated TLR8 induction. Our findings characterize TLR8 as a novel estrogen target gene that can lower the inflammatory threshold and implicate an IFNα-independent inflammatory mechanism that could contribute to higher SLE incidence in women.


Assuntos
Endossomos/efeitos dos fármacos , Estradiol/farmacologia , Receptor alfa de Estrogênio/imunologia , Leucócitos Mononucleares/efeitos dos fármacos , Lúpus Eritematoso Sistêmico/imunologia , Receptor 8 Toll-Like/imunologia , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Células Cultivadas , Endossomos/imunologia , Endossomos/metabolismo , Receptor alfa de Estrogênio/genética , Feminino , Regulação da Expressão Gênica , Humanos , Imidazóis/farmacologia , Fatores Imunológicos/farmacologia , Interferon-alfa/imunologia , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica , Fatores Sexuais , Transdução de Sinais , Receptor 8 Toll-Like/agonistas , Receptor 8 Toll-Like/genética
13.
Mol Immunol ; 54(1): 23-31, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23178823

RESUMO

Systemic lupus erythematosus (SLE) is a prototypic, inflammatory autoimmune disease characterized by significant gender bias. Previous studies have established a role for hormones in SLE pathogenesis, including the sex hormone estrogen. Estrogen regulates gene expression by translocating estrogen receptors (ER) α and ß into the nucleus where they induce transcription by binding to estrogen response elements (EREs) of target genes. The ZAS3 locus encodes a signaling and transcriptional molecule involved in regulating inflammatory responses. We show that ZAS3 is significantly up-regulated in SLE patients at both the protein and mRNA levels in peripheral blood mononuclear cells (PBMCs). Furthermore, estrogen stimulates the expression of ZAS3 in vitro in several leukocyte and breast cancer cell lines of both human and murine origin. In vivo estrogen treatment mediates induction of tissue specific ZAS3 expression in several lymphoid organs in mice. Estrogen stimulation also significantly up-regulates ZAS3 expression in primary PBMCs, while treatment with testosterone has no effect. Mechanistically, estrogen induces differential ERα binding to putative EREs within the ZAS3 gene and ERα knockdown with siRNA prevents estrogen induced ZAS3 up-regulation. In contrast, siRNA targeting IFNα has no effect. These data demonstrate that ZAS3 expression is directly regulated by estrogen and that ZAS3 is overexpressed in lupus. Since ZAS3 has been shown to regulate inflammatory pathways, its up-regulation by estrogen could play a critical role in female-biased autoimmune disorders.


Assuntos
Proteínas de Ligação a DNA/genética , Estradiol/farmacologia , Lúpus Eritematoso Sistêmico/genética , Fatores de Transcrição/genética , Animais , Células Cultivadas , Proteínas de Ligação a DNA/metabolismo , Relação Dose-Resposta a Droga , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Estrogênios/farmacologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Lúpus Eritematoso Sistêmico/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Transcrição/metabolismo , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
14.
J Clin Endocrinol Metab ; 95(7 Suppl 1): s1-s66, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20566620

RESUMO

OBJECTIVE: Our objective was to provide a scholarly review of the published literature on menopausal hormonal therapy (MHT), make scientifically valid assessments of the available data, and grade the level of evidence available for each clinically important endpoint. PARTICIPANTS IN DEVELOPMENT OF SCIENTIFIC STATEMENT: The 12-member Scientific Statement Task Force of The Endocrine Society selected the leader of the statement development group (R.J.S.) and suggested experts with expertise in specific areas. In conjunction with the Task Force, lead authors (n = 25) and peer reviewers (n = 14) for each specific topic were selected. All discussions regarding content and grading of evidence occurred via teleconference or electronic and written correspondence. No funding was provided to any expert or peer reviewer, and all participants volunteered their time to prepare this Scientific Statement. EVIDENCE: Each expert conducted extensive literature searches of case control, cohort, and randomized controlled trials as well as meta-analyses, Cochrane reviews, and Position Statements from other professional societies in order to compile and evaluate available evidence. No unpublished data were used to draw conclusions from the evidence. CONSENSUS PROCESS: A consensus was reached after several iterations. Each topic was considered separately, and a consensus was achieved as to content to be included and conclusions reached between the primary author and the peer reviewer specific to that topic. In a separate iteration, the quality of evidence was judged using the GRADE (Grading of Recommendations, Assessment, Development, and Evaluation) system in common use by The Endocrine Society for preparing clinical guidelines. The final iteration involved responses to four levels of additional review: 1) general comments offered by each of the 25 authors; 2) comments of the individual Task Force members; 3) critiques by the reviewers of the Journal of Clinical Endocrinology & Metabolism; and 4) suggestions offered by the Council and members of The Endocrine Society. The lead author compiled each individual topic into a coherent document and finalized the content for the final Statement. The writing process was analogous to preparation of a multiauthored textbook with input from individual authors and the textbook editors. CONCLUSIONS: The major conclusions related to the overall benefits and risks of MHT expressed as the number of women per 1000 taking MHT for 5 yr who would experience benefit or harm. Primary areas of benefit included relief of hot flashes and symptoms of urogenital atrophy and prevention of fractures and diabetes. Risks included venothrombotic episodes, stroke, and cholecystitis. In the subgroup of women starting MHT between ages 50 and 59 or less than 10 yr after onset of menopause, congruent trends suggested additional benefit including reduction of overall mortality and coronary artery disease. In this subgroup, estrogen plus some progestogens increased the risk of breast cancer, whereas estrogen alone did not. Beneficial effects on colorectal and endometrial cancer and harmful effects on ovarian cancer occurred but affected only a small number of women. Data from the various Women's Health Initiative studies, which involved women of average age 63, cannot be appropriately applied to calculate risks and benefits of MHT in women starting shortly after menopause. At the present time, assessments of benefit and risk in these younger women are based on lower levels of evidence.


Assuntos
Terapia de Reposição de Estrogênios/efeitos adversos , Terapia de Reposição de Estrogênios/normas , Endocrinologia/métodos , Feminino , Humanos , Medição de Risco , Sociedades Médicas
15.
J Immunol ; 175(3): 1965-73, 2005 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-16034141

RESUMO

Introducing lpr mutation prevents early mortality associated with IL-2Ralpha knockout (KO) mice, prompting us to determine the role of Fas in the immune system biology of IL-2Ralpha KO mice. Consistent with a defect in CD4+CD25+ regulatory T (Treg) cell expression, spontaneous lymphocyte activation in lymphoid organs was observed in 6-wk-old mice. In 16- to 22-wk-old mice, infiltration of leukocytes was observed in bone marrow, colon, lung, pancreas, lacrimal gland, and salivary gland, but not in heart, thyroid, liver, stomach, small intestine, ovary, and kidney. In the lymphocytes-infiltrated bone marrow, B cell lymphopoiesis was blocked at pro-B to pre-B/immature B stage, culminating in an age-dependent B cell loss in the periphery. These phenotypes were also observed in IL-2Ralpha KO mice bearing the lpr mutation (DM mice), indicating Treg cell function and the phenotypes attributed directly to Treg cell abnormality are largely Fas-independent. However, anemia and body weight loss were partially prevented, tissue cell apoptosis was inhibited, and lifespan was improved in the DM mice, demonstrating Fas-dependent elements in these processes. Our age-dependent, lifelong analysis of IL-2Ralpha KO and DM mice supports a CD4+CD25+ Treg cell-based mechanism for the abnormal immune system biology observed in IL-2Ralpha KO mice and provides a global view of the interplays among Treg cells, multiorgan inflammation, hemopoiesis, and apoptosis.


Assuntos
Apoptose/imunologia , Hematopoese/imunologia , Camundongos Knockout/imunologia , Receptores de Interleucina/deficiência , Receptores de Interleucina/genética , Linfócitos T Reguladores/imunologia , Receptor fas/fisiologia , Animais , Apoptose/genética , Subpopulações de Linfócitos B/imunologia , Subpopulações de Linfócitos B/patologia , Células da Medula Óssea/imunologia , Células da Medula Óssea/patologia , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Colo/imunologia , Colo/metabolismo , Colo/patologia , Feminino , Hematopoese/genética , Deficiência de IgG/genética , Deficiência de IgG/imunologia , Deficiência de IgG/patologia , Inflamação/genética , Inflamação/imunologia , Inflamação/prevenção & controle , Subunidade alfa de Receptor de Interleucina-2 , Longevidade/genética , Longevidade/imunologia , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/patologia , Linfonodos/imunologia , Linfonodos/metabolismo , Linfonodos/patologia , Ativação Linfocitária/genética , Contagem de Linfócitos , Linfopenia/genética , Linfopenia/imunologia , Linfopenia/patologia , Transtornos Linfoproliferativos/genética , Transtornos Linfoproliferativos/imunologia , Transtornos Linfoproliferativos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos MRL lpr , Camundongos Knockout/genética , Receptores de Interleucina/fisiologia , Análise de Sobrevida , Linfócitos T Reguladores/patologia , Receptor fas/genética
16.
Int Immunol ; 16(5): 759-66, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15096479

RESUMO

During thymic selection 'mis-selected' CD8(+) T cells exit to the periphery where they are deleted by a Fas/FasL-mediated mechanism, presumably as a result of activation by self-antigens. In the absence of functional FasL, as is the case in autoimmune gld mice, these 'mis-selected' T cells develop into unique Thy1(+)CD4(-)CD8(-) TCRalphabeta(+)B220(+) lymphocytes [abnormal double negative T (DN T) cells]. Using bioactive FasL-bearing vesicles [FasL vesicle preparation (FasL VP)], we were able to induce acute apoptosis in freshly isolated lymphocytes and to demonstrate that peripheral lymphocytes of gld mice become more sensitive to the FasL-mediated apoptosis as they age. Furthermore, flow cytometric analyses indicated that within this peripheral lymphocyte population, the abnormal DN T cells were preferentially eliminated. The exquisite sensitivity of these abnormal DN T cells is attributed to their increased membrane Fas expression with a concomitant reduction of cytosolic FLIP(L). Our data support the hypothesis that specific components of the Fas-mediated apoptotic pathway are modulated in favor of the elimination of auto-reactive T cells as well as those CD8(+) T cells that are 'mis-selected' in the thymus and escape to the periphery.


Assuntos
Apoptose/imunologia , Doenças Autoimunes/imunologia , Deleção Clonal , Glicoproteínas de Membrana/farmacologia , Subpopulações de Linfócitos T/imunologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais Murinos , Apoptose/genética , Proteínas Reguladoras de Apoptose , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Proteína Ligante Fas , Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/genética , Antígenos Comuns de Leucócito/análise , Linfonodos/citologia , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/imunologia , Camundongos , Camundongos Mutantes , Proteínas/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , RNA Mensageiro/análise , Baço/citologia , Timo/citologia , Proteína bcl-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA