Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 77(6): 1177-1196, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31327046

RESUMO

In mammalian ovaries, the theca layers of growing follicles are critical for maintaining their structural integrity and supporting androgen synthesis. Through combining the postnatal monitoring of ovaries by abdominal magnetic resonance imaging, endocrine profiling, hormonal analysis of the follicular fluid of growing follicles, and transcriptomic analysis of follicular theca cells, we provide evidence that the exposure of ovine fetuses to testosterone excess activates postnatal follicular growth and strongly affects the functions of follicular theca in adulthood. Prenatal exposure to testosterone impaired androgen synthesis in the small antral follicles of adults and affected the expression in their theca cells of a wide array of genes encoding extracellular matrix components, their membrane receptors, and signaling pathways. Most expression changes were uncorrelated with the concentrations of gonadotropins, steroids, and anti-Müllerian hormone in the recent hormonal environment of theca cells, suggesting that these changes rather result from the long-term developmental effects of testosterone on theca cell precursors in fetal ovaries. Disruptions of the extracellular matrix structure and signaling in the follicular theca and ovarian cortex can explain the acceleration of follicle growth through altering the stiffness of ovarian tissue. We propose that these mechanisms participate in the etiology of the polycystic ovarian syndrome, a major reproductive pathology in woman.


Assuntos
Síndrome do Ovário Policístico/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Testosterona/metabolismo , Células Tecais/metabolismo , Animais , Células Cultivadas , Feminino , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Folículo Ovariano/citologia , Folículo Ovariano/crescimento & desenvolvimento , Folículo Ovariano/metabolismo , Síndrome do Ovário Policístico/genética , Gravidez , Efeitos Tardios da Exposição Pré-Natal/genética , Ovinos , Células Tecais/citologia , Células Tecais/ultraestrutura
2.
FEBS Lett ; 590(16): 2566-74, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27364741

RESUMO

Murine double minute 2 and 4 (Mdm2, Mdm4) are major p53-negative regulators, preventing thus uncontrolled apoptosis induction in numerous cell types, although their function in the female germ line has received little attention. In the present work, we have generated mice with specific invalidation of Mdm2 and Mdm4 genes in the mouse oocyte (Mdm2(Ocko) and Mdm4(Ocko) mice), to test their implication in survival of these germ cells. Most of the Mdm2(Ocko) but not Mdm4(Ocko) mice were sterile, with a dramatic reduction of the weight of ovaries and genital tract, a strong increase in follicle-stimulating hormone and luteinizing hormone serum levels, and a reduction of anti-mullerian hormone serum levels. Histological analyses revealed an obvious decrease of the number of growing follicles beyond the primary stage in Mdm2(Ocko) ovaries in comparison to controls, with a pronounced increase in the apparition of primary atretic follicles, most being devoid of oocyte. Similar phenotypes were observed with Mdm2(Ocko) Mdm4(Ocko) ovaries, with no worsening of the phenotype. However, we failed to detect any increase in p53 level in mutant oocytes, nor any other apoptotic marker, introgression of this targeted invalidation in p53-/- mice restored the fertility of females. This study is the first to show that Mdm2, but not Mdm4, has a critical role in oocyte survival and would be involved in premature ovarian insufficiency phenotype.


Assuntos
Infertilidade Feminina/genética , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas/genética , Proteína Supressora de Tumor p53/genética , Animais , Hormônio Antimülleriano/metabolismo , Feminino , Hormônio Foliculoestimulante , Infertilidade Feminina/patologia , Camundongos , Camundongos Knockout , Oócitos/metabolismo , Oócitos/patologia , Folículo Ovariano/metabolismo , Folículo Ovariano/patologia , Ovário/crescimento & desenvolvimento , Ovário/metabolismo , Ovário/patologia , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/metabolismo
3.
Reprod Fertil Dev ; 24(7): 932-44, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22935154

RESUMO

High between-animal variability in the number of embryos produced by multiple ovulation and embryo transfer (MOET) and ovum pick-up and in vitro production (OPU-IVP) methods remains a major limit to the development of embryo biotechnologies in cattle. The measurement of anti-Müllerian hormone (AMH) endocrine concentrations in cows can help to predict their follicular and ovulatory responses to gonadotrophin treatment. The present study aimed to provide practical information for a simple prognostic method based on AMH measurement in Holstein cows. Accurate AMH concentrations could be measured with ELISA in blood or plasma. In cows undergoing repeated OPU protocols over 1 year, the AMH concentrations measured in plasma samples collected before each gonadotrophin treatment were found to be highly repeatable and were tightly correlated with follicular responses. From data obtained at both an experimental station and farm settings, it was possible to propose AMH cut-off values to identify low-responding cows. Gonadotrophin-stimulated cows producing fewer than 15 large follicles at oestrus and fewer than 10 embryos in MOET protocols could be discarded efficiently with plasma AMH concentrations below 87 and 74 pg mL(-1), respectively. In conclusion, we propose a prognostic method based on a single AMH measurement to improve the results of embryo biotechnologies.


Assuntos
Hormônio Antimülleriano/sangue , Fármacos para a Fertilidade Feminina/administração & dosagem , Inseminação Artificial/veterinária , Doação de Oócitos/veterinária , Indução da Ovulação/veterinária , Superovulação/efeitos dos fármacos , Animais , Biomarcadores/sangue , Busserrelina/administração & dosagem , Bovinos , Esquema de Medicação , Quimioterapia Combinada , Técnicas de Cultura Embrionária/veterinária , Transferência Embrionária/veterinária , Ensaio de Imunoadsorção Enzimática , Feminino , Hormônio Foliculoestimulante/administração & dosagem , Gravidez , Taxa de Gravidez , Progesterona/administração & dosagem , Reprodutibilidade dos Testes
4.
Biol Reprod ; 84(3): 560-71, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21076084

RESUMO

Anti-Müllerian hormone (AMH) is an endocrine marker that can help predict superovulatory responses to treatments administered to cows for embryo production. However, the optimal time of the estrous cycle at which a blood test should be performed for a highly reliable prognosis has not yet been established. Moreover, little is known about the regulation of AMH production. To answer these questions, a study was designed to investigate the regulation of AMH production in cows selected for their high or low ovulatory responses to superovulation. At the granulosa cell level, AMH production was inhibited by follicle-stimulating hormone but enhanced by bone morphogenetic proteins. At the follicular level, the expression of AMH within the follicle was dependent on the stage of follicular development. At the ovarian level, the size of the pool of small antral growing follicles determined ovarian AMH production. At the endocrine level, AMH followed a specific dynamic profile during the estrous cycle, which occurred independently of the follicular waves of terminal follicular development. Cows selected for their high or low responses to superovulation did not differ in the regulation of AMH production, but cows with higher responses had higher plasma AMH concentrations throughout the cycle. The optimal period of the estrous cycle at which to measure AMH concentrations with the aim of selecting the best cows for embryo production was found to be at estrus and after Day 12 of the cycle. Based on this multiscale study, we propose a model that integrates the different regulatory levels of AMH production.


Assuntos
Hormônio Antimülleriano/genética , Hormônio Antimülleriano/metabolismo , Células da Granulosa/metabolismo , Folículo Ovariano/metabolismo , Ovário/metabolismo , Animais , Bovinos , Tamanho Celular , Células Cultivadas , Sistema Endócrino/metabolismo , Sistema Endócrino/fisiologia , Estradiol/sangue , Ciclo Estral/sangue , Ciclo Estral/genética , Ciclo Estral/metabolismo , Feminino , Regulação da Expressão Gênica , Células da Granulosa/citologia , Folículo Ovariano/citologia , Progesterona/sangue
5.
Stem Cells ; 25(1): 211-9, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17023512

RESUMO

As an intracellular second messenger, nitric oxide (NO) is increasingly implicated in the control of transcriptional machinery and gene expression. Here, we show that cell surface expression of CXCR4 on CD34(+) cells was increased in a dose- and time-dependent manner in response to NO donors. Augmented surface expression was correlated with an increase in CXCR4 mRNA level. A specific NO scavenger prevented the elevation in CXCR4 mRNA caused by NO donors, suggesting a direct signaling action mediated by NO on CXCR4 transcription. NO treatment had no significant effect on CXCR4 mRNA stability. However, induction of CXCR4 mRNA by NO was still observed in conditions in which initiation of translation was inhibited, suggesting that the NO effect must be mediated by a pre-existing protein. CXCR4 mRNA induction did not involve cGMP (guanosine 3', 5'-cyclic monophosphate) generation but was most likely mediated via oxidation of intracellular protein thiols. Finally, CD34(+) cells pretreated with NO donors exhibited an increased chemotactic response. This study demonstrates that the NO pathway can modulate CXCR4 expression in human CD34(+) cells and suggests that NO may play a critical role in the trafficking of hematopoietic progenitors.


Assuntos
Antígenos CD34/análise , Regulação da Expressão Gênica/fisiologia , Células-Tronco Hematopoéticas/fisiologia , Doadores de Óxido Nítrico/farmacologia , Óxido Nítrico/farmacologia , Receptores CXCR4/genética , Técnicas de Cultura de Células , Sobrevivência Celular/efeitos dos fármacos , Primers do DNA , Sangue Fetal/citologia , Citometria de Fluxo , Regulação da Expressão Gênica/efeitos dos fármacos , Células-Tronco Hematopoéticas/efeitos dos fármacos , Humanos , Recém-Nascido , Cinética , Compostos Nitrosos/farmacologia , Reação em Cadeia da Polimerase , RNA Mensageiro/genética , Transcrição Gênica/efeitos dos fármacos
6.
Br J Haematol ; 134(2): 171-9, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16846476

RESUMO

Chronic myeloid leukaemia (CML) is characterised by a progression from a chronic towards an acute phase. We previously reported that signal transducer and activator of transcription 3 (STAT3), a major oncogenic signalling protein, is the target of p210-BCR-ABL in a murine embryonic stem (ES) cell model and in primary CD34+ CML cells. This activation was associated with inhibition of differentiation in ES cells. The present study found that BCR-ABL greatly phosphorylated STAT3 Ser727 residue and, to a lesser extent, Tyr705 residue in BCR-ABL-expressing cell lines (UT7-p210, MO7E-p210, and K562) and in primary CD34+ CML cells. Using BCR-ABL mutants, it was shown that BCR-ABL tyrosine kinase activity and its Tyr177 residue were necessary for STAT3 Ser727 phosphorylation. Constitutive STAT3 Tyr705 phosphorylation was associated with constitutive phosphorylation of Janus kinase (JAK)1 and JAK2, and was inhibited by the JAK inhibitor AG490, suggesting the involvement of JAK proteins in this process. Specific MEK [mitogen-activated protein (MAP) kinase/extracellular signal-regulated kinase (ERK) kinase] inhibitors PD98056 and UO126, as well as the use of a dominant-negative form of MEK1 abrogated STAT3 Ser727 phosphorylation, suggesting involvement of MAP-Kinase/Erk pathway. Inhibition of BCR-ABL with imatinib mesylate led to a dose-dependent downregulation of total STAT3 protein and mRNA, suggesting that BCR-ABL is involved in the transcriptional regulation of STAT3. Targeting JAK, MEK and STAT3 pathways could therefore be of therapeutic value, especially in advanced stage CML.


Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Proteínas Tirosina Quinases/fisiologia , Fator de Transcrição STAT3/metabolismo , Antígenos CD34/análise , Proteínas de Fusão bcr-abl , Regulação Neoplásica da Expressão Gênica , Humanos , Janus Quinase 1 , Janus Quinase 2 , Leucemia Mielogênica Crônica BCR-ABL Positiva/enzimologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , MAP Quinase Quinase Quinases/fisiologia , Proteínas de Neoplasias/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas/fisiologia , RNA Mensageiro/genética , Fator de Transcrição STAT3/genética , Transdução de Sinais , Transcrição Gênica , Células Tumorais Cultivadas
7.
Blood ; 107(6): 2243-51, 2006 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-16291599

RESUMO

The physiologic role of CXCR4 on hematopoietic stem/progenitor cells (HSPCs) is not fully understood. Here, we show that radioprotection of lethally irradiated mice by embryonic day 14.5 (E14.5) CXCR4-/- fetal liver (FL) cells was markedly impaired when compared with CXCR4+/+ counterparts, but this defect was rescued when hosts were engrafted with high cell numbers. This quantitative defect contrasted with a similar content in hematopoietic colony-forming cells (CFCs), splenic colony-forming units (CFUs-S), and Lin- Sca-1+ c-kit+ cells in E14.5 CXCR4-/- and CXCR4+/+ livers. In addition, the homing of HSPCs in the bone marrow was not altered as detected with a CFSE-staining assay. In contrast, a 30-fold increase in CFCs was seen in the circulation of mice stably reconstituted with CXCR4-/- FL cells and this increment was already observed before hematopoiesis had reached a steady-state level. Together, the data strongly suggest that impaired retention may, at least in short-term hematopoietic reconstitution, lead to a diminution in the number of available progenitors required for radioprotection.


Assuntos
Medula Óssea/fisiologia , Células-Tronco Hematopoéticas/fisiologia , Irradiação Corporal Total , Animais , Movimento Celular , Embrião de Mamíferos , Hematopoese , Fígado/citologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Receptores CXCR4 , Baço/citologia
8.
Blood ; 106(9): 2962-8, 2005 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-15998835

RESUMO

Regulators of G-protein signaling (RGS) constitute a family of proteins involved in the negative regulation of signaling through heterotrimeric G protein-coupled receptors (GPCRs). Several RGS proteins have been implicated in the down-regulation of chemokine signaling in hematopoietic cells. The chemokine stromal-cell-derived factor 1 (SDF-1) activates migration of hematopoietic progenitors cells but fails to activate mature megakaryocytes despite high levels of CXC chemokine receptor 4 (CXCR4) receptor expression in these cells. This prompted us to analyze RGS expression and function during megakaryocyte differentiation. We found that RGS16 and RGS18 mRNA expression was up-regulated during this process. Overexpressing RGS16 mRNA in the megakaryocytic MO7e cell line inhibited SDF-1-induced migration, mitogen-activated protein kinase (MAPK) and protein kinase B (AKT) activation, whereas RGS18 overexpression had no effect on CXCR4 signaling. Knocking down RGS16 mRNA via lentiviral-mediated RNA interference increased CXCR4 signaling in MO7e cells and in primary megakaryocytes. Thus, our data reveal that RGS16 is a negative regulator of CXCR4 signaling in megakaryocytes. We postulate that RGS16 regulation is a mechanism that controls megakaryocyte maturation by regulating signals from the microenvironment.


Assuntos
Quimiocinas CXC/metabolismo , Megacariócitos/metabolismo , Proteínas/metabolismo , Proteínas RGS/metabolismo , Receptores CXCR4/metabolismo , Transdução de Sinais , Plaquetas/citologia , Plaquetas/metabolismo , Diferenciação Celular , Linhagem Celular , Quimiocina CXCL12 , Quimiocinas CXC/genética , Quimiotaxia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Megacariócitos/citologia , Conformação de Ácido Nucleico , Proteínas/química , Proteínas/genética , Proteínas RGS/química , Proteínas RGS/genética , Regulação para Cima
9.
Cancer Res ; 65(7): 2676-83, 2005 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-15805265

RESUMO

It has been shown that p210(BCR-ABL) significantly impairs CXCR4 signaling. We report here that the migratory response to SDF-1 was profoundly altered in blast crisis, whereas chronic-phase CD34(+) cells migrated normally to this chemokine. This migratory defect was associated with a low CXCR4 membrane expression. In vitro STI-571 treatment of CD34(+) cells from patients in blast crisis markedly increased the CXCR4 transcript and CXCR4 membrane expression. Because p210(BCR-ABL) frequently increases with disease progression, we determined the effects of high and low p210(BCR-ABL) expression on CXCR4 protein in the granulocyte macrophage colony-stimulating factor-dependent human cell line MO7e. p210(BCR-ABL) expression distinctly alters CXCR4 protein through two different mechanisms depending on its expression level. At low expression, a signaling defect was detected with no modification of CXCR4 expression. However, higher p210(BCR-ABL) expression induced a marked down-regulation of CXCR4 that is related to its decreased transcription. The effect of p210(BCR-ABL) required its tyrosine kinase activity. Collectively, these data indicate that p210(BCR-ABL) could affect CXCR4 by more than one mechanism and suggest that down-regulation of CXCR4 may have important implications in chronic myelogenous leukemia pathogenesis.


Assuntos
Quimiocinas CXC/antagonistas & inibidores , Proteínas de Fusão bcr-abl/fisiologia , Receptores CXCR4/fisiologia , Animais , Antígenos CD34/biossíntese , Benzamidas , Crise Blástica , Linhagem Celular , Quimiocina CXCL12 , Quimiocinas CXC/fisiologia , Regulação para Baixo , Proteínas de Fusão bcr-abl/biossíntese , Proteínas de Fusão bcr-abl/genética , Proteínas de Fusão bcr-abl/metabolismo , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/fisiologia , Humanos , Mesilato de Imatinib , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Camundongos , Células NIH 3T3 , Piperazinas/farmacologia , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/fisiologia , Pirimidinas/farmacologia , Receptores CXCR4/antagonistas & inibidores , Receptores CXCR4/biossíntese , Transdução de Sinais , Transcrição Gênica
10.
Stem Cells ; 22(6): 1015-29, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15536192

RESUMO

CXCR4, the stromal cell-derived factor-1 receptor, plays an important role in the migration of hematopoietic progenitor/stem cells. The surface and cytoplasmic expression of CXCR4 on human hematopoietic CD34(+) cells was investigated. We show that its surface expression is low, whereas a large part of CXCR4 protein is sequestered intracellularly. Using confocal microscopy, we demonstrated that CXCR4 is colocalized with EEA-1, Rab5, Rab4, and Rab11, which are localized in early and recycling endosomes. No significant colocalization of CXCR4 with lysosomal markers CD63 and Lamp-1 was detected. Using antibody feeding experiments, we report a role for CXCR4 constitutive endocytosis in subcellular localization in stably transduced UT7-CXCR4-GFP and CD34(+) cells. Agonist-independent endocytosis of CXCR4 occurs through clathrin-coated vesicles. These data implicate a constitutive endocytosis in the regulation of CXCR4 membrane expression and suggest that constitutive endocytosis may be involved in the regulation of trafficking the human hematopoietic progenitor/stem cells to and in the bone marrow microenvironment.


Assuntos
Antígenos CD34/biossíntese , Células-Tronco Hematopoéticas/citologia , Receptores CXCR4/biossíntese , Antígenos CD/biossíntese , Membrana Celular/metabolismo , Movimento Celular , Quimiotaxia , Clatrina/metabolismo , Endocitose , Citometria de Fluxo , Regulação da Expressão Gênica , Proteínas de Fluorescência Verde/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Humanos , Ligantes , Proteínas de Membrana Lisossomal , Proteínas de Membrana/biossíntese , Microscopia Confocal , Plasmídeos/metabolismo , Glicoproteínas da Membrana de Plaquetas/biossíntese , Retroviridae/genética , Transdução de Sinais , Temperatura , Tetraspanina 30 , Proteínas de Transporte Vesicular , Proteínas rab de Ligação ao GTP/biossíntese , Proteínas rab4 de Ligação ao GTP/biossíntese , Proteínas rab5 de Ligação ao GTP/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA