Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Gen Subj ; 1864(5): 129557, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32045632

RESUMO

BACKGROUND: Polyamines can induce protein aggregation that can be related to the physiology of the cellular function. Polyamines have been implicated in protein aggregation which may lead to neuropathic and non neuropathic amyloidosis. SCOPE OF REVIEW: Change in the level of polyamine concentration has been associated with ageing and neurodegeneration such as Parkinson's disease, Alzheimer's disease. Lysozyme aggregation in the presence of polyamines leads to non neuropathic amyloidosis. Polyamine analogues can suppress or inhibit protein aggregation suggesting their efficacy against amyloidogenic protein aggregates. MAJOR CONCLUSIONS: In this study we report the comparative interactions of lysozyme with the polyamine analogue, 1-naphthyl acetyl spermine in comparison with the biogenic polyamines through spectroscopy, calorimetry, imaging and docking techniques. The findings revealed that the affinity of binding varied as spermidine > 1-naphthyl acetyl spermine > spermine. The biogenic polyamines accelerated the rate of fibrillation significantly, whereas the analogue inhibited the rate of fibrillation to a considerable extent. The polyamines bind near the catalytic diad residues viz. Glu35 and Asp52, and in close proximity of Trp62 residue. However, the analogue showed dual nature of interaction where its alkyl amine region bind in same way as the biogenic polyamines bind to the catalytic site, while the naphthyl group makes hydrophobic contacts with Trp62 and Trp63, thereby suggesting its direct influence on fibrillation. GENERAL SIGNIFICANCE: This study, thus, potentiates, the development of a polyamine analogue that can perform as an effective inhibitor targeted towards aggregation of amyloidogenic proteins.


Assuntos
Amiloide/metabolismo , Proteínas Aviárias/metabolismo , Galinhas/metabolismo , Muramidase/metabolismo , Espermidina/metabolismo , Espermina/análogos & derivados , Amiloidose/metabolismo , Animais , Poliaminas Biogênicas/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Simulação de Acoplamento Molecular , Agregados Proteicos , Agregação Patológica de Proteínas/metabolismo , Espermina/metabolismo
2.
Phys Chem Chem Phys ; 17(25): 16630-45, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26041372

RESUMO

The binding of the iminium and alkanolamine forms of chelerythrine to lysozyme (Lyz) was investigated by spectroscopy and docking studies. The thermodynamics of the binding was studied by calorimetry. Spectroscopic evidence suggested that Trp-62 and Trp-63 in the ß-domain of the protein are closer to the binding site; moreover, the binding site was at a distance of 2.27 and 2.00 nm from the iminium and alkanolamine forms, respectively, according to the Forster theory of non-radiation energy transfer. The equilibrium binding constants for the iminium and alkanolamine forms at 298 K were evaluated to be 1.29 × 10(5) and 7.79 × 10(5) M(-1), respectively. The binding resulted in an alteration of the secondary structure of the protein with a distinct reduction of the helical organization. The binding of iminium was endothermic, involving electrostatic and hydrophobic interactions, while that of alkanolamine form was exothermic and dominated by hydrogen bonding interactions. Docking studies provided the atomistic details pertaining to the binding of both forms of chelerythrine and supported the higher binding in favour of the alkanolamine over the iminium. Furthermore, molecular dynamics study provided accurate insights regarding the binding of both chelerythrine forms in accordance with the experimental results obtained. Chelerythrine binding pocket involves the catalytic region and aggregation prone K-peptide region, which are sandwiched between one another. Overall, these results suggest that both the forms of the alkaloid bind to the protein but the neutral form has higher affinity than the cationic form.


Assuntos
Antineoplásicos/química , Benzofenantridinas/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Muramidase/química , Animais , Sítios de Ligação , Calorimetria , Dicroísmo Circular , Isoquinolinas/química , Conformação Molecular , Ligação Proteica , Espectrometria de Fluorescência , Termodinâmica
3.
J Phys Chem B ; 118(46): 13077-91, 2014 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-25354369

RESUMO

Sanguinarine (SGR) exists in charged iminium (SGRI) and neutral alkanolamine (SGRA) forms. The binding of these two forms to the protein lysozyme (Lyz) was investigated by fluorescence, UV-vis absorbance and circular dichroism spectroscopy, and in silico molecular docking approaches. Binding thermodynamics were studied by microcalorimetry. Both forms of sanguinarine quenched the intrinsic fluorescence of Lyz, but the quenching efficiencies varied on the basis of binding that was derived after correction for an inner-filter effect. The equilibrium binding constants at 25 ± 1.0 °C for the iminium and alkanolamine forms were 1.17 × 10(5) and 3.32 × 10(5) M(-1), respectively, with approximately one binding site for both forms of the protein. Conformational changes of the protein in the presence of SGR were confirmed by absorbance, circular dichroism, three-dimensional fluorescence, and synchronous fluorescence spectroscopy. Microcalorimetry data revealed that SGRI binding is endothermic and predominantly involves electrostatic and hydrophobic interactions, whereas SGRA binding is exothermic and dominated by hydrogen-bonding interactions. The molecular distances (r) of 3.27 and 3.04 nm between the donor (Lyz) and the SGRI and SGRA acceptors, respectively, were calculated according to Förster's theory. These data suggested that both forms were bound near the Trp-62/63 residues of Lyz. Stronger binding of SGRA than SGRI was apparent from the results of both structural and thermodynamic experiments. Molecular docking studies revealed that the putative binding site for the SGR analogues resides at the catalytic site. The docking results are in accordance with the spectroscopic and thermodynamic data, further validating the stronger binding of SGRA over SGRI to Lyz. The binding site is situated near a deep crevice on the protein surface and is close to several crucial amino acid residues, including Asp-52, Glu-35, Trp-62, and Trp-63. This study advances our knowledge of the structural nature and thermodynamic aspects of binding between the putative anticancer alkaloid sanguinarine and lysozyme.


Assuntos
Aminas/química , Benzofenantridinas/metabolismo , Iminas/química , Isoquinolinas/metabolismo , Muramidase/metabolismo , Alcaloides/química , Alcaloides/metabolismo , Animais , Benzofenantridinas/química , Sítios de Ligação , Calorimetria , Domínio Catalítico , Galinhas , Dicroísmo Circular , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Isoquinolinas/química , Simulação de Acoplamento Molecular , Muramidase/química , Ligação Proteica , Espectrofotometria Ultravioleta , Temperatura , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA