Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Appl Microbiol ; 134(8)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37480242

RESUMO

AIMS: This study aims to prioritize fungal strains recovered from under-explored habitats that produce new metabolites. HRMS dereplication is used to avoid structure redundancy, and molecular modelling is used to assign absolute configuration. METHODS AND RESULTS: MBC15-11F was isolated from an amphipod and identified using ITS, 28S, and ß-tubulin phylogeny as Aspergillus sydowii. Chemical profiling using taxonomic-based dereplication identified structurally diverse metabolites, including unreported ones. Large-scale fermentation led to the discovery of a new N-acyl adenosine derivative: (S)-sydosine (1) which was elucidated by NMR and HRESIMS analyses. Two known compounds were also identified as predicted by the initial dereplication process. Due to scarcity of 1, molecular modelling was used to assign its absolute configuration without hydrolysis, and is supported by advanced Mosher derivatization. When the isolated compounds were assessed against a panel of bacterial pathogens, only phenamide (3) showed anti-Staphylococcus aureus activity. CONCLUSION: Fermentation of A. sydowii yielded a new (S)-sydosine and known metabolites as predicted by HRESIMS-aided dereplication. Molecular modelling prediction of the absolute configuration of 1 agreed with advanced Mosher analysis.


Assuntos
Anfípodes , Animais , Aspergillus , Staphylococcus aureus/genética , Estrutura Molecular
2.
Molecules ; 27(23)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36500460

RESUMO

The Nigerian Niger-Delta crude oil exploration often results in spills that affect indigenous medicinal plant biodiversity, likely changing the phytochemical profile of surviving species, their bioactivity or toxicity. In crude oil-rich Kokori and crude oil-free Abraka, classic examples of indigenous plants occupying the medicine-food interface include Vernonia amygdalina (VAL) and Ocimum gratissimum leaves (OGL). These plants are frequently utilised during pregnancy and in anaemia. To date, no scientific investigation has been reported on the potential changes to the phytochemical or bioactivity of the study plants. To discuss the similarities and dissimilarities in antisickling bioactivity and phytochemicals in VAL and OGL collected from Kokori (VAL-KK and OGL-KK) and Abraka (VAL-AB and OGL-AB), in silico, in vitro and comparative UPLC-QTOF-MS analysis was performed. Nine unique compounds were identified in OGL-KK, which have never been reported in the literature, while differences in antisickling potentials were observed in VAL-KK, OGL-KK and, VAL-AB, OGL-AB. Our findings show that VAL-AB and OGL-AB are richer and more diverse in phytochemicals and displayed a slightly higher antisickling activity than VAL-KK and OGL-KK. Ligand-based pharmacophore modelling was performed to understand the potential compounds better; this study may provide a basis for explaining the effect of crude oil spills on secondary metabolites and a reference for further research.


Assuntos
Ocimum , Petróleo , Plantas Medicinais , Vernonia , Ocimum/química , Vernonia/química , Folhas de Planta , Extratos Vegetais/farmacologia
3.
Int J Mol Sci ; 23(22)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36430762

RESUMO

Monkeypox is caused by a DNA virus known as the monkeypox virus (MPXV) belonging to the Orthopoxvirus genus of the Poxviridae family. Monkeypox is a zoonotic disease where the primary significant hosts are rodents and non-human primates. There is an increasing global incidence with a 2022 outbreak that has spread to Europe in the middle of the COVID-19 pandemic. The new outbreak has novel, previously undiscovered mutations and variants. Currently, the US Food and Drug Administration (FDA) approved poxvirus treatment involving the use of tecovirimat. However, there has otherwise been limited research interest in monkeypox. Mitoxantrone (MXN), an anthracycline derivative, an FDA-approved therapeutic for treating cancer and multiple sclerosis, was previously reported to exhibit antiviral activity against the vaccinia virus and monkeypox virus. In this study, virtual screening, molecular docking analysis, and pharmacophore ligand-based modelling were employed on anthracene structures (1-13) closely related to MXN to explore the potential repurposing of multiple compounds from the PubChem library. Four chemical structures (2), (7), (10) and (12) show a predicted high binding potential to suppress viral replication.


Assuntos
COVID-19 , Mpox , Animais , Humanos , Monkeypox virus , Mpox/diagnóstico , Mpox/tratamento farmacológico , Simulação de Acoplamento Molecular , Mitoxantrona/farmacologia , Reposicionamento de Medicamentos , Pandemias , Receptores de Droga , Primatas , Roedores
4.
Molecules ; 27(15)2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35897874

RESUMO

This work evaluated the metabolic profiling of Inga species with antitumor potential. In addition, we described the antigenotoxicity of polyphenols isolated from I. laurina and a proteomic approach using HepG2 cells after treatment with these metabolites. The in vitro cytotoxic activity against HepG2, HT-29 and T98G cancer cell lines was investigated. The assessment of genotoxic damage was carried out through the comet assay. The ethanolic extract from I. laurina seeds was subjected to bioassay-guided fractionation and the most active fractions were characterized. One bioactive fraction with high cytotoxicity against HT-29 human colon cancer cells (IC50 = 4.0 µg mL-1) was found, and it was characterized as a mixture of p-hydroxybenzoic acid and 4-vinyl-phenol. The I. edulis fruit peel (IC50 = 18.6 µg mL-1) and I. laurina seed (IC50 = 15.2 µg mL-1) extracts had cytotoxic activity against the cell line T98G, and its chemical composition showed a variety of phenolic acids. The chemical composition of this species indicated a wide variety of aromatic acids, flavonoids, tannins, and carotenoids. The high concentration (ranging from 5% to 30%) of these polyphenols in the bioactive extract may be responsible for the antitumor potential. Regarding the proteomic approach, we detected proteins directly related to the elimination of ROS, DNA repair, expression of tumor proteins, and apoptosis.


Assuntos
Fabaceae , Polifenóis , Flavonoides/química , Flavonoides/farmacologia , Humanos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Proteômica
5.
Foods ; 10(12)2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34945464

RESUMO

Vernonia amygdalina (VA) and Ocimum gratissimum (OG) are among the most frequently consumed vegetables in Kokori and Abraka communities of Delta State, Nigeria. However, the continuous crude oil exploration and spillages in Kokori may threaten their safety for use as food and medicine. Twelve samples of VA and OG obtained from crude oil-rich and crude oil-free communities were comparatively analysed for proximate composition, heavy metals, and cytotoxicity. Data obtained were subjected to various multivariate statistical techniques, including principal component analysis (PCA), biplot, and analysis of variance (ANOVA), to investigate the correlations between the vegetables from the different communities and the effect of crude oil exploration and spill on plant biomass. Results obtained indicate a significant difference (p < 0.05) in the proximate composition of VA and OG and higher heavy metal content for VA from the crude oil-spill Kokori. Two VA collections from Kokori were exceptionally toxic to cellular crustaceans.

6.
Mar Drugs ; 19(6)2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34205180

RESUMO

Three dermacozines, dermacozines N-P (1-3), were isolated from the piezotolerant Actinomycete strain Dermacoccus abyssi MT 1.1T, which was isolated from a Mariana Trench sediment in 2006. Herein, we report the elucidation of their structures using a combination of 1D/2D NMR, LC-HRESI-MSn, UV-Visible, and IR spectroscopy. Further confirmation of the structures was achieved through the analysis of data from density functional theory (DFT)-UV-Visible spectral calculations and statistical analysis such as two tailed t-test, linear regression-, and multiple linear regression analysis applied to either solely experimental or to experimental and calculated 13C-NMR chemical shift data. Dermacozine N (1) bears a novel linear pentacyclic phenoxazine framework that has never been reported as a natural product. Dermacozine O (2) is a constitutional isomer of the known dermacozine F while dermacozine P (3) is 8-benzoyl-6-carbamoylphenazine-1-carboxylic acid. Dermacozine N (1) is unique among phenoxazines due to its near infrared (NIR) absorption maxima, which would make this compound an excellent candidate for research in biosensing chemistry, photodynamic therapy (PDT), opto-electronic applications, and metabolic mapping at the cellular level. Furthermore, dermacozine N (1) possesses weak cytotoxic activity against melanoma (A2058) and hepatocellular carcinoma cells (HepG2) with IC50 values of 51 and 38 µM, respectively.


Assuntos
Actinobacteria/química , Sedimentos Geológicos/microbiologia , Fenazinas/química , Fenazinas/isolamento & purificação , Processos Fotoquímicos , Luz , Espectroscopia de Ressonância Magnética , Análise de Regressão , Espectrofotometria/métodos
7.
Mol Omics ; 17(1): 95-107, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33185220

RESUMO

Siderophores are iron-chelating compounds that aid iron uptake, one of the key strategies for microorganisms to carve out ecological niches in microbially diverse environments. Desferrioxamines are the principal siderophores produced by Streptomyces spp. Their biosynthesis has been well studied and as a consequence, the chemical potential of the pathway continues to expand. With all of this in mind, our study aimed to explore extremotolerant and lupine rhizosphere-derived Streptomyces sp. S29 for its potential antifungal capabilities. Cocultivation of isolate S29 was carried out with Aspergillus niger and Botrytis cinerea, both costly fungal phytopathogens in the wine industry, to simulate their interaction within the rhizosphere. The results indicate that not only is Streptomyces sp. S29 extraordinary at producing hydroxamate siderophores but uses siderophore production as a means to 'starve' the fungi of iron. High resolution LC-MS/MS followed by GNPS molecular networking was used to observe the datasets for desferrioxamines and guided structure elucidation of new desferrioxamine analogues. Comparing the new chemistry, using tools like molecular networking and MS2LDA, with the known biosynthesis, we show that the chemical potential of the desferrioxamine pathway has further room for exploration.


Assuntos
Desferroxamina/metabolismo , Ferro/metabolismo , Lupinus/microbiologia , Rizosfera , Streptomyces/metabolismo , Antifúngicos/química , Antifúngicos/farmacologia , Cromatografia Líquida , Desferroxamina/química , Desferroxamina/farmacologia , Redes e Vias Metabólicas , Espectrometria de Massas em Tandem
8.
Molecules ; 25(4)2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-32093030

RESUMO

As opposed to small molecules, macrocyclic peptides possess a large surface area and are recognised as promising candidates to selectively treat diseases by disrupting specific protein-protein interactions (PPIs). Due to the difficulty in predicting cyclopeptide conformations in solution, the de novo design of bioactive cyclopeptides remains significantly challenging. In this study, we used the combination of conformational analyses and molecular docking studies to design a new cyclopeptide inhibitor of the interaction between the human tumour necrosis factor alpha (TNFα) and its receptor TNFR-1. This interaction is a key in mediating the inflammatory response to tissue injury and infection in humans, and it is also an important causative factor of rheumatoid arthritis, psoriasis and inflammatory bowel disease. The solution state NMR structure of the cyclopeptide was determined, which helped to deduce its mode of interaction with TNFα. TNFα sensor cells were used to evaluate the biological activity of the peptide.


Assuntos
Desenho de Fármacos , Peptídeos Cíclicos , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Células HEK293 , Humanos , Peptídeos Cíclicos/síntese química , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Estrutura Secundária de Proteína , Relação Estrutura-Atividade
9.
J Org Chem ; 85(3): 1661-1667, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-31931565

RESUMO

A new lasso peptide, huascopeptin, was isolated following genome-mined discovery of a new biosynthetic gene cluster in extremotolerant Streptomyces huasconensis HST28T from Salar de Huasco, Atacama Desert, Chile. Compound 1 is a 13-residue class II lasso peptide containing a novel Gly1-Asp7 macrolactam ring, a three-residue loop, and a three-residue tail, making it the smallest lasso peptide isolated to date. The lasso structure was confirmed using NOE restraint-based molecular dynamics simulations.


Assuntos
Peptídeos , Streptomyces , Família Multigênica , Streptomyces/genética
10.
Anal Biochem ; 592: 113583, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31945311

RESUMO

Improved health span and lifespan extension in a wide phylogenetic range of species is associated with the induction of the environmental cell stress response through a signalling pathway regulated by the transcription factor Nrf2. Phytochemicals which stimulate this response may form part of therapeutic interventions which stimulate endogenous cytoprotective mechanisms, thereby delaying the onset of age-related diseases and promoting healthy ageing in humans. In order to identify compounds that activate the Nrf2 pathway, a cell-based reporter system was established in HepG2 cells using a luciferase reporter gene under the control of the Nqo1 promoter. Sulforaphane, an isothiocyanate derived from cruciferous vegetables and a known activator of the Nrf2 pathway, was used to validate the reporter system. The transfected cell line HepG2 C1 was subsequently used to screen natural product libraries. Five compounds were identified as activating the bioluminescent reporter by greater than 5-fold. The two most potent compounds, MBC20 and MBC37, were further characterised and shown to stimulate endogenous cytoprotective gene and protein expression. The bioluminescent reporter system will allow rapid, in vitro identification of novel compounds that have the potential to improve health span through activation of the environmental stress response.


Assuntos
Medições Luminescentes/métodos , Fator 2 Relacionado a NF-E2/metabolismo , Compostos Fitoquímicos/farmacologia , Antioxidantes/metabolismo , Células Hep G2 , Humanos
11.
Appl Environ Microbiol ; 85(23)2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31562169

RESUMO

Analysis of the genome sequence of Streptomyces leeuwenhoekii C34T identified biosynthetic gene clusters (BGCs) for three different lasso peptides (Lp1, Lp2, and Lp3) which were not known to be made by the strain. Lasso peptides represent relatively new members of the RiPP (ribosomally synthesized and posttranslationally modified peptides) family of natural products and have not been extensively studied. Lp3, whose production could be detected in culture supernatants from S. leeuwenhoekii C34T and after heterologous expression of its BGC in Streptomyces coelicolor, is identical to the previously characterized chaxapeptin. Lp1, whose production could not be detected or achieved heterologously, appears to be identical to a recently identified member of the citrulassin family of lasso peptides. Since production of Lp2 by S. leeuwenhoekii C34T was not observed, its BGC was also expressed in S. coelicolor The lasso peptide was isolated and its structure confirmed by mass spectrometry and nuclear magnetic resonance analyses, revealing a novel structure that appears to represent a new family of lasso peptides.IMPORTANCE Recent developments in genome sequencing combined with bioinformatic analysis have revealed that actinomycetes contain a plethora of unexpected BGCs and thus have the potential to produce many more natural products than previously thought. This reflects the inability to detect the production of these compounds under laboratory conditions, perhaps through the use of inappropriate growth media or the absence of the environmental cues required to elicit expression of the corresponding BGCs. One approach to overcoming this problem is to circumvent the regulatory mechanisms that control expression of the BGC in its natural host by deploying heterologous expression. The generally compact nature of lasso peptide BGCs makes them particularly amenable to this approach, and, in the example given here, analysis revealed a new member of the lasso peptide family of RiPPs. This approach should be readily applicable to other cryptic lasso peptide gene clusters and would also facilitate the design and production of nonnatural variants by changing the sequence encoding the core peptide, as has been achieved with other classes of RiPPs.


Assuntos
Proteínas de Bactérias/genética , Expressão Gênica , Família Multigênica , Peptídeos/genética , Streptomyces/genética , Proteínas de Bactérias/metabolismo , Peptídeos/metabolismo , Streptomyces/metabolismo
12.
Mar Drugs ; 17(7)2019 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-31252576

RESUMO

Due to the unique biodiversity and the physical-chemical properties of their environment, marine microorganisms have evolved defense and signaling compounds that often have no equivalent in terrestrial habitats. The aim of this study was to screen extracts of the dinoflagellate Amphidinium carterae for possible bioactivities (i.e., anticancer, anti-inflammatory, anti-diabetes, antibacterial and antifungal properties) and identify bioactive compounds. Anticancer activity was evaluated on human lung adenocarcinoma (A549), human skin melanoma (A2058), human hepatocellular carcinoma (HepG2), human breast adenocarcinoma (MCF7) and human pancreas carcinoma (MiaPaca-2) cell lines. Antimicrobial activities were evaluated against Gram-positive bacteria (Staphylococcus aureus MRSA and MSSA), Gram-negative bacteria (i.e., Escherichia coli and Klebsiella pneumoniae), Mycobacterium tuberculosis and the fungus Aspergillus fumigatus. The results indicated moderate biological activities against all the cancer cells lines and microorganisms tested. Bioassay-guided fractionation assisted by HRMS analysis allowed the detection of one new and two known amphidinols that are potentially responsible for the antifungal and cytotoxic activities observed. Further isolation, purification and structural elucidation led to a new amphidinol, named amphidinol 22. The planar structure of the new compound was determined by analysis of its HRMS and 1D and 2D NMR spectra. Its biological activity was evaluated, and it displayed both anticancer and antifungal activities.


Assuntos
Antifúngicos/farmacologia , Antineoplásicos/farmacologia , Dinoflagellida/química , Policetídeos/farmacologia , Antifúngicos/química , Antifúngicos/isolamento & purificação , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Aspergillus fumigatus/efeitos dos fármacos , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Espectroscopia de Ressonância Magnética , Testes de Sensibilidade Microbiana , Estrutura Molecular , Policetídeos/química , Policetídeos/isolamento & purificação , Relação Estrutura-Atividade
13.
Sci Rep ; 9(1): 4678, 2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30886188

RESUMO

The taxonomic status, biotechnological and ecological potential of several Micromonospora strains isolated from an extreme hyper arid Atacama Desert soil were determined. Initially, a polyphasic study was undertaken to clarify the taxonomic status of five micromonosporae, strains LB4, LB19, LB32T, LB39T and LB41, isolated from an extreme hyper-arid soil collected from one of the driest regions of the Atacama Desert. All of the isolates were found to have chemotaxonomic, cultural and morphological properties consistent with their classification in the genus Micromonospora. Isolates LB32T and LB39T were distinguished from their nearest phylogenetic neighbours and proposed as new species, namely as Micromonospora arida sp. nov. and Micromonospora inaquosa sp. nov., respectively. Eluted methanol extracts of all of the isolates showed activity against a panel of bacterial and fungal indicator strains, notably against multi-drug resistant Klebsiella pneumoniae ATCC 700603 while isolates LB4 and LB41 showed pronounced anti-tumour activity against HepG2 cells. Draft genomes generated for the isolates revealed a rich source of novel biosynthetic gene clusters, some of which were unique to individual strains thereby opening up the prospect of selecting especially gifted micromonosporae for natural product discovery. Key stress-related genes detected in the genomes of all of the isolates provided an insight into how micromonosporae adapt to the harsh environmental conditions that prevail in extreme hyper-arid Atacama Desert soils.


Assuntos
Anti-Infecciosos/isolamento & purificação , Antineoplásicos/isolamento & purificação , Infecções por Klebsiella/terapia , Klebsiella pneumoniae/fisiologia , Neoplasias Hepáticas/terapia , Metanol/isolamento & purificação , Micromonospora/fisiologia , Anti-Infecciosos/uso terapêutico , Antineoplásicos/uso terapêutico , Extratos Celulares , Chile , Clima Desértico , Descoberta de Drogas , Células Hep G2 , Humanos , Filogenia , Microbiologia do Solo , Streptomyces/fisiologia , Estresse Fisiológico/genética
14.
Nat Chem ; 11(4): 342-350, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30903037

RESUMO

The architecture and bioactivity of natural products frequently serve as embarkation points for the exploration of biologically relevant chemical space. Total synthesis followed by derivative synthesis has historically enabled a deeper understanding of structure-activity relationships. However, synthetic strategies towards a natural product are not always guided by hypotheses regarding the structural features required for bioactivity. Here, we report an approach to natural product total synthesis that we term 'pharmacophore-directed retrosynthesis'. A hypothesized, pharmacophore of a natural product is selected as an early synthetic target and this dictates the retrosynthetic analysis. In an ideal application, sequential increases in the structural complexity of this minimal structure enable development of a structure-activity relationship profile throughout the course of the total synthesis effort. This approach enables the identification of simpler congeners retaining bioactivity at a much earlier stage of a synthetic effort, as demonstrated here for the spongiane diterpenoid, gracilin A, leading to simplified derivatives with potent neuroprotective and immunosuppressive activity.


Assuntos
Acetatos/química , Diterpenos/química , Furanos/química , Imunossupressores/química , Fármacos Neuroprotetores/química , Acetatos/síntese química , Acetatos/farmacologia , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular/efeitos dos fármacos , Cristalografia por Raios X , Reação de Cicloadição , Diterpenos/síntese química , Diterpenos/farmacologia , Desenho de Fármacos , Furanos/síntese química , Furanos/farmacologia , Humanos , Imunossupressores/síntese química , Imunossupressores/farmacologia , Membranas Mitocondriais/metabolismo , Conformação Molecular , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-Atividade
15.
PLoS Pathog ; 14(5): e1006978, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29775474

RESUMO

Fungal cells change shape in response to environmental stimuli, and these morphogenic transitions drive pathogenesis and niche adaptation. For example, dimorphic fungi switch between yeast and hyphae in response to changing temperature. The basidiomycete Cryptococcus neoformans undergoes an unusual morphogenetic transition in the host lung from haploid yeast to large, highly polyploid cells termed Titan cells. Titan cells influence fungal interaction with host cells, including through increased drug resistance, altered cell size, and altered Pathogen Associated Molecular Pattern exposure. Despite the important role these cells play in pathogenesis, understanding the environmental stimuli that drive the morphological transition, and the molecular mechanisms underlying their unique biology, has been hampered by the lack of a reproducible in vitro induction system. Here we demonstrate reproducible in vitro Titan cell induction in response to environmental stimuli consistent with the host lung. In vitro Titan cells exhibit all the properties of in vivo generated Titan cells, the current gold standard, including altered capsule, cell wall, size, high mother cell ploidy, and aneuploid progeny. We identify the bacterial peptidoglycan subunit Muramyl Dipeptide as a serum compound associated with shift in cell size and ploidy, and demonstrate the capacity of bronchial lavage fluid and bacterial co-culture to induce Titanisation. Additionally, we demonstrate the capacity of our assay to identify established (cAMP/PKA) and previously undescribed (USV101) regulators of Titanisation in vitro. Finally, we investigate the Titanisation capacity of clinical isolates and their impact on disease outcome. Together, these findings provide new insight into the environmental stimuli and molecular mechanisms underlying the yeast-to-Titan transition and establish an essential in vitro model for the future characterization of this important morphotype.


Assuntos
Cryptococcus neoformans/citologia , Cryptococcus neoformans/patogenicidade , Animais , Criptococose/microbiologia , Cryptococcus neoformans/genética , AMP Cíclico/metabolismo , Modelos Animais de Doenças , Feminino , Proteínas Fúngicas/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Hifas/citologia , Hifas/crescimento & desenvolvimento , Hifas/patogenicidade , Pulmão/microbiologia , Pneumopatias Fúngicas/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão , Modelos Biológicos , Morfogênese , Poliploidia , Fatores de Transcrição/metabolismo , Virulência
16.
Front Immunol ; 7: 452, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27822214

RESUMO

The modulation of the immune system can have multiple applications such as cancer treatment, and a wide type of processes involving inflammation where the potent chemotactic agent cyclophilin A (Cyp A) is implicated. The Porifera phylum, in which Spongionella is encompassed, is the main producer of marine bioactive compounds. Four secondary metabolites obtained from Spongionella (Gracilin H, A, L, and Tetrahydroaplysulphurin-1) were described to hit Cyp A and to block the release of inflammation mediators. Based on these results, some role of Spongionella compounds on other steps of the signaling pathway mediated by this chemotactic agent can be hypothesized. In the present paper, we studied the effect of these four compounds on the surface membrane CD147 receptor expression, on the extracellular levels of Cyp A and on the ability to migrate of concanavalin (Con A)-activated T lymphocytes. Similar to a well-known immunosuppressive agent cyclosporine A (CsA), Gracilin H, A, L, and tetrahydroaplysulphurin-1 were able to reduce the CD147 membrane expression and to block the release of Cyp A to the medium. Besides, by using Cyp A as chemotactic agent, T cell migration was inhibited when cells were previously incubated with Gracilin A and Gracilin L. These positive results lead us to test the in vivo effect of Gracilin H and L in a mouse ear delayed hypersensitive reaction. Thus, both compounds efficiently reduce the ear swelling as well as the inflammatory cell infiltration. These results provide more evidences for their potential therapeutic application in immune-related diseases of Spongionella compounds.

17.
Acta Crystallogr D Struct Biol ; 72(Pt 11): 1174-1180, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27841750

RESUMO

Determination of protein crystal structures requires that the phases are derived independently of the observed measurement of diffraction intensities. Many techniques have been developed to obtain phases, including heavy-atom substitution, molecular replacement and substitution during protein expression of the amino acid methionine with selenomethionine. Although the use of selenium-containing methionine has transformed the experimental determination of phases it is not always possible, either because the variant protein cannot be produced or does not crystallize. Phasing of structures by measuring the anomalous diffraction from S atoms could in theory be almost universal since almost all proteins contain methionine or cysteine. Indeed, many structures have been solved by the so-called native sulfur single-wavelength anomalous diffraction (S-SAD) phasing method. However, the anomalous effect is weak at the wavelengths where data are normally recorded (between 1 and 2 Å) and this limits the potential of this method to well diffracting crystals. Longer wavelengths increase the strength of the anomalous signal but at the cost of increasing air absorption and scatter, which degrade the precision of the anomalous measurement, consequently hindering phase determination. A new instrument, the long-wavelength beamline I23 at Diamond Light Source, was designed to work at significantly longer wavelengths compared with standard synchrotron beamlines in order to open up the native S-SAD method to projects of increasing complexity. Here, the first novel structure, that of the oxidase domain involved in the production of the natural product patellamide, solved on this beamline is reported using data collected to a resolution of 3.15 Šat a wavelength of 3.1 Å. The oxidase is an example of a protein that does not crystallize as the selenium variant and for which no suitable homology model for molecular replacement was available. Initial attempts collecting anomalous diffraction data for native sulfur phasing on a standard macromolecular crystallography beamline using a wavelength of 1.77 Šdid not yield a structure. The new beamline thus has the potential to facilitate structure determination by native S-SAD phasing for what would previously have been regarded as very challenging cases with modestly diffracting crystals and low sulfur content.


Assuntos
Proteínas de Bactérias/química , Cyanothece/enzimologia , Oxirredutases/química , Cristalização/métodos , Cristalografia por Raios X/métodos , Cyanothece/química , Modelos Moleculares , Conformação Proteica , Selenometionina/química
18.
Mar Drugs ; 14(11)2016 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-27801775

RESUMO

Makaluvamines are pyrroloiminoquinones isolated from Zyzzya sponges. Until now, they have been described as topoisomerase II inhibitors with cytotoxic effects in diverse tumor cell lines. In the present work, seven makaluvamines were tested in several antioxidant assays in primary cortical neurons and neuroblastoma cells. Among the alkaloids studied, makaluvamine J was the most active in all the assays. This compound was able to reduce the mitochondrial damage elicited by the well-known stressor H2O2. The antioxidant properties of makaluvamine J are related to an improvement of the endogenous antioxidant defenses of glutathione and catalase. SHSY5Y assays proved that this compound acts as a Nrf2 activator leading to an improvement of antioxidant defenses. A low concentration of 10 nM is able to reduce the reactive oxygen species release and maintain a correct mitochondrial function. Based on these results, non-substituted nitrogen in the pyrrole plus the presence of a p-hydroxystyryl without a double bond seems to be the most active structure with a complete antioxidant effect in neuronal cells.


Assuntos
Antioxidantes/farmacologia , Poríferos/química , Pirróis/química , Pirróis/farmacologia , Pirroliminoquinonas/farmacologia , Quinolonas/química , Quinolonas/farmacologia , Animais , Linhagem Celular , Linhagem Celular Tumoral , Feminino , Glutationa/metabolismo , Peróxido de Hidrogênio/toxicidade , Camundongos , Mitocôndrias/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Gravidez , Cultura Primária de Células , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-Atividade
19.
Chemistry ; 22(37): 13089-97, 2016 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-27389424

RESUMO

Cyclic peptides are a class of compounds with high therapeutic potential, possessing bioactivities including antitumor and antiviral (including anti-HIV). Despite their desirability, efficient design and production of these compounds has not been achieved to date. The catalytic mechanism of patellamide macrocyclization by the PatG macrocyclase domain has been computationally investigated by using quantum mechanics/molecular mechanics methodology, specifically ONIOM(M06/6-311++G(2d,2p):ff94//B3LYP/6-31G(d):ff94). The mechanism proposed herein begins with a proton transfer from Ser783 to His 618 and from the latter to Asp548. Nucleophilic attack of Ser783 on the substrate leads to the formation of an acyl-enzyme covalent complex. The leaving group Ala-Tyr-Asp-Gly (AYDG) of the substrate is protonated by the substrate's N terminus, leading to the breakage of the P1-P1' bond. Finally, the substrate's N terminus attacks the P1 residue, decomposing the acyl-enzyme complex forming the macrocycle. The formation and decomposition of the acyl-enzyme complex have the highest activation free energies (21.1 kcal mol(-1) and 19.8 kcal mol(-1) respectively), typical of serine proteases. Understanding the mechanism behind the macrocyclization of patellamides will be important to the application of the enzymes in the pharmaceutical and biotechnological industries.

20.
Pharmacol Res ; 107: 407-414, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27041481

RESUMO

Marine sponges are found to be a wide source of bioactive compounds with different effects such as anti-inflammatory or anticancer actions among others. Cyclophilin A (Cyp A) is a target protein implicated in the mechanism of action of immunosuppressive compounds such as Cyclosporine A (CsA). In the present paper we studied the binding between 4 Spongionella compounds (Gracilins H, A, L and Tetrahydroaplysulphurin-1) and Cyp A immobilized over a CM5 sensor chip. Thus, we found that Spongionella compounds showed to have similar binding affinities than CsA with dissociation equilibrium constant in the range. Next, the effect of these Spongionella isolated compounds was tested over calcineurin phosphatase activity. The same than CsA, Gracilin H, A and Tetrahydroaplysulphurin-1 were able to inhibit phosphatase activity once the complex between Cyp A-CsA/Spongionella compounds was formed. The ability to avoid the dephosphorylation of NFATc1 was also checked in human T cells isolated from peripheral blood. First, cells were pre-treated with Spongionella compounds or CsA following by Concanavalin A (Con A) stimulation. In these conditions nuclear NFATc1 levels were diminished either by CsA or Gracilin A, L, and Tetrahydroaplysulphurin-1 treatment. Moreover, as happens with CsA due to the inhibition of NFATc1, Interleukine-2 (IL-2) released to the culture medium was significantly decreased with all Spongionella compounds. Results conclude that, Spongionella derivatives preserve T lymphocytes from activation modulating the same pathway than CsA. Thus, this mechanism of action suggests that these compounds could be interesting candidates in drug development as immunosuppressive or anti-inflammatory drugs.


Assuntos
Ciclosporina/metabolismo , Diterpenos/metabolismo , Imunossupressores/metabolismo , Poríferos/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Diterpenos/farmacologia , Humanos , Interleucina-2/metabolismo , Fatores de Transcrição NFATC/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA