Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Vet Sci ; 10(8)2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37624302

RESUMO

The market for nanoparticles has grown significantly over the past few decades due to a number of unique qualities, including antibacterial capabilities. It is still unclear how nanoparticle toxicity works. In order to ascertain the toxicity of synthetic cobalt iron oxide (CoFe2O4) nanoparticles (CIONPs) in rabbits, this study was carried out. Sixteen rabbits in total were purchased from the neighborhood market and divided into two groups (A and B), each of which contained eight rabbits. The CIONPs were synthesized by the co-precipitation method. Crystallinity and phase identification were confirmed by X-ray diffraction (XRD). The average size of the nanoparticles (13.2 nm) was calculated by Scherrer formula (Dhkl = 0.9 λ/ß cos θ) and confirmed by TEM images. The saturation magnetization, 50.1 emug-1, was measured by vibrating sample magnetometer (VSM). CIONPs were investigated as contrast agents (CA) for magnetic resonance images (MRI). The relaxivity (r = 1/T) of the MRI was also investigated at a field strength of 0.35 T (Tesla), and the ratio r2/r1 for the CIONPs contrast agent was 6.63. The CIONPs were administrated intravenously into the rabbits through the ear vein. Blood was collected at days 5 and 10 post-exposure for hematological and serum biochemistry analyses. The intensities of the signal experienced by CA with CIONPs were 1427 for the liver and 1702 for the spleen. The treated group showed significantly lower hematological parameters, but significantly higher total white blood cell counts and neutrophils. The results of the serum biochemistry analyses showed significantly higher and lower quantities of different serum biochemical parameters in the treated rabbits at day 10 of the trial. At the microscopic level, different histological ailments were observed in the visceral organs of treated rabbits, including the liver, kidneys, spleen, heart, and brain. In conclusion, the results revealed that cobalt iron oxide (CoFe2O4) nanoparticles induced toxicity via alterations in multiple tissues of rabbits.

2.
J Pak Med Assoc ; 72(9): 1760-1765, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36280971

RESUMO

OBJECTIVE: To characterize human liver tissues by demonstrating the ability of machine vision, and to propose a new auto-generated report based on texture analysis that may work with co-occurrence matrix statistics. METHODS: The retrospective study was conducted at Bahawal Victoria Hospital (BVH), Bahawalpur, Pakistan, and comprised clinically verified computed tomography imaging data between October 2018 and September 2020. The image samples and related data were used to segregate classes 1-4. Appropriate image classes belonging to the same disease were trained to confirm the abnormalities in liver tissues using supervised learning methods, principal component analysis, linear discriminant analysis, and non-linear discriminant analysis. Robust and reliable texture features were investigated by generating testing classes. Overall performance of the presented machine vision approach was analyzed using four parameters; precision, recall/sensitivity, F1-score, and accuracy. Statistical analysis was done using B11 software. RESULTS: There were 312 image samples from 71 patients; 51(71.8%) males and 20(28.2%) females. Among the patients, 19(26.7%) had abscess, 15(21.1%) had metastatic disease, 23(32.4%) had tumour necrosis, 6(8.5%) had vascular disorder, and 8(11.3%) were normal. Principal component analysis, linear discriminant analysis, and non-linear discriminant analysis showed high >97.86% values, but the discrimination rate was 100% for class 4. CONCLUSIONS: Abnormalities in the human liver could be discriminated and diagnosed by texture analysis techniques using second-order statistics that may assist the radiologist and medical physicists in predicting the severity and proliferation of abnormalities in liver diseases.


Assuntos
Algoritmos , Tomografia Computadorizada por Raios X , Masculino , Feminino , Humanos , Estudos Retrospectivos , Tomografia Computadorizada por Raios X/métodos , Fígado/diagnóstico por imagem , Análise de Componente Principal
3.
Oxid Med Cell Longev ; 2022: 5066167, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35308168

RESUMO

From the past few decades, attention towards the biological evaluation of nanoparticles (NPs) has increased due to the persistent and extensive application of NPs in various fields, including biomedical science, modern industry, magnetic resonance imaging, and the construction of sensors. Therefore, in the current study, magnetic nickel ferrite (NiFe2O4) nanoparticles (NFNPs) were synthesized and evaluated for their possible adverse effects in rabbits. The crystallinity of the synthesized NFNPs was confirmed using X-ray diffraction (XRD) technique. The saturation magnetization (46.7 emug-1) was measured using vibrating sample magnetometer (VSM) and 0.35-tesla magnetron by magnetic resonance imaging (MRI). The adverse effects of NFNPs on blood biochemistry and histoarchitecture of the liver, kidneys, spleen, brain, and heart of the rabbits were determined. A total of sixteen adult rabbits, healthy and free from any apparent infection, were blindly placed in two groups. The rabbits in group A served as control, while the rabbits in group B received a single dose (via ear vein) of NFNPs for ten days. The blood and visceral tissues were collected from each rabbit at days 5 and 10 of posttreatment. The results on blood and serum biochemistry profile indicated significant variation in hematological and serum biomarkers in NFNP-treated rabbits. The results showed an increased quantity of oxidative stress and depletion of antioxidant enzymes in treated rabbits. Various serum biochemical tests exhibited significantly higher concentrations of different liver function tests, kidney function tests, and cardiac biomarkers. Histopathologically, the liver showed congestion, edema, atrophy, and degeneration of hepatocytes. The kidneys exhibited hemorrhages, atrophy of renal tubule, degeneration, and necrosis of renal tubules, whereas coagulative necrosis, neutrophilic infiltration, and severe myocarditis were seen in different sections of the heart. The brain of the treated rabbits revealed necrosis of neurons, neuron atrophy, and microgliosis. In conclusion, the current study results indicated that the highest concentration of NPs induced adverse effects on multiple tissues of the rabbits.


Assuntos
Compostos Férricos , Nanopartículas , Animais , Compostos Férricos/farmacologia , Nanopartículas/toxicidade , Níquel/toxicidade , Estresse Oxidativo , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA