Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Alzheimers Dement (Amst) ; 16(2): e12603, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38800123

RESUMO

INTRODUCTION: Brain insulin resistance and deficiency is a consistent feature of Alzheimer's disease (AD). Insulin resistance can be mediated by the surface expression of the insulin receptor (IR). Cleavage of the IR generates the soluble IR (sIR). METHODS: We measured the levels of sIR present in cerebrospinal fluid (CSF) from individuals along the AD diagnostic spectrum from two cohorts: Seattle (n = 58) and the Consortium for the Early Identification of Alzheimer's Disease-Quebec (CIMA-Q; n = 61). We further investigated the brain cellular contribution for sIR using human cell lines. RESULTS: CSF sIR levels were not statistically different in AD. CSF sIR and amyloid beta (Aß)42 and Aß40 levels significantly correlated as well as CSF sIR and cognition in the CIMA-Q cohort. Human neurons expressing the amyloid precursor protein "Swedish" mutation generated significantly greater sIR and human astrocytes were also able to release sIR in response to both an inflammatory and insulin stimulus. DISCUSSION: These data support further investigation into the generation and role of sIR in AD. Highlights: Cerebrospinal fluid (CSF) soluble insulin receptor (sIR) levels positively correlate with amyloid beta (Aß)42 and Aß40.CSF sIR levels negatively correlate with cognitive performance (Montreal Cognitive Assessment score).CSF sIR levels in humans remain similar across Alzheimer's disease diagnostic groups.Neurons derived from humans with the "Swedish" mutation in which Aß42 is increased generate increased levels of sIR.Human astrocytes can also produce sIR and generation is stimulated by tumor necrosis factor α and insulin.

2.
J Neurol Sci ; 452: 120763, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37598468

RESUMO

BACKGROUND: NOTCH3 is the causative gene for autosomal dominant cerebral arteriopathy with subcortical infarctions and leukoencephalopathy (CADASIL) which is associated with both stroke and dementia. When CADASIL presents primarily as dementia it can be difficult to distinguish from Alzheimer's disease (AD) at both the clinical and neuropathological levels. METHODS: We performed exome sequencing of several affected individuals from a large family affected with AD. PCR amplification and direct Sanger sequencing were used to verify variants detected by exome analysis and to screen family members at-risk to carry those variants. Neuropathologic brain evaluation by immunohistochemistry and MRI were performed for the carriers of the NOTCH3 variant. RESULTS: In a three-generation family with AD, we found a c.601 T > C p.Cys201Arg variant in the NOTCH3 gene that caused clinical and neuropathological manifestations of CADASIL. These features included earlier onset of dementia accompanied by behavioral abnormalities in the father and son and white matter abnormalities in the asymptomatic grandson. The family is one branch of a large pedigree studied by the Alzheimer's Disease Sequencing Project (ADSP). As part of the ADSP linkage analysis and whole genome sequencing endeavor, an ABCA1 variant, p.Ala937Val, was previously found associated with AD in this pedigree. CONCLUSIONS: Our findings, together with other reported pathogenic missense variants of the C201 codon in NOTCH3, support the role of cysteine 201 as a mutation hotspot for CADASIL and highlight the genetic complexity both clinically and pathologically of AD and related dementia.


Assuntos
Doença de Alzheimer , CADASIL , Demência Vascular , Leucoencefalopatias , Humanos , Doença de Alzheimer/complicações , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , CADASIL/complicações , CADASIL/diagnóstico por imagem , CADASIL/genética , Infarto Cerebral , Receptor Notch3/genética
3.
Proc Natl Acad Sci U S A ; 119(50): e2213157119, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36490316

RESUMO

The formation of toxic Amyloid ß-peptide (Aß) oligomers is one of the earliest events in the molecular pathology of Alzheimer's Disease (AD). These oligomers lead to a variety of downstream effects, including impaired neuronal signaling, neuroinflammation, tau phosphorylation, and neurodegeneration, and it is estimated that these events begin 10 to 20 y before the presentation of symptoms. Toxic Aß oligomers contain a nonstandard protein structure, termed α-sheet, and designed α-sheet peptides target this main-chain structure in toxic oligomers independent of sequence. Here we show that a designed α-sheet peptide inhibits the deleterious effects on neuronal signaling and also serves as a capture agent in our soluble oligomer binding assay (SOBA). Pre-incubated synthetic α-sheet-containing Aß oligomers produce strong SOBA signals, while monomeric and ß-sheet protofibrillar Aß do not. α-sheet containing oligomers were also present in cerebrospinal fluid (CSF) from an AD patient versus a noncognitively impaired control. For the detection of toxic oligomers in plasma, we developed a plate coating to increase the density of the capture peptide. The proof of concept was achieved by testing 379 banked human plasma samples. SOBA detected Aß oligomers in patients on the AD continuum, including controls who later progressed to mild cognitive impairment. In addition, SOBA discriminated AD from other forms of dementia, yielding sensitivity and specificity of 99% relative to clinical and neuropathological diagnoses. To explore the broader potential of SOBA, we adapted the assay for a-synuclein oligomers and confirmed their presence in CSF from patients with Parkinson's disease and Lewy body dementia.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/sangue , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/sangue , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Peptídeos beta-Amiloides/metabolismo , Doença de Parkinson/sangue , Doença de Parkinson/líquido cefalorraquidiano , Doença de Parkinson/metabolismo , Fragmentos de Peptídeos/sangue , Fragmentos de Peptídeos/líquido cefalorraquidiano , Fragmentos de Peptídeos/metabolismo , Líquido Cefalorraquidiano/química , Doença por Corpos de Lewy/sangue , Doença por Corpos de Lewy/líquido cefalorraquidiano , Doença por Corpos de Lewy/metabolismo , Técnicas Imunoenzimáticas/métodos
4.
J Alzheimers Dis ; 77(2): 675-688, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32741831

RESUMO

BACKGROUND: Early-onset familial Alzheimer disease (EOFAD) is caused by heterozygous variants in the presenilin 1 (PSEN1), presenilin 2 (PSEN2), and APP genes. Decades after their discovery, the mechanisms by which these genes cause Alzheimer's disease (AD) or promote AD progression are not fully understood. While it is established that presenilin (PS) enzymatic activity produces amyloid-ß (Aß), PSs also regulate numerous other cellular functions, some of which intersect with known pathogenic drivers of neurodegeneration. Accumulating evidence suggests that microglia, resident innate immune cells in the central nervous system, play a key role in AD neurodegeneration. OBJECTIVE: Previous work has identified a regulatory role for PS2 in microglia. We hypothesized that PSEN2 variants lead to dysregulated microglia, which could further contribute to disease acceleration. To mimic the genotype of EOFAD patients, we created a transgenic mouse expressing PSEN2 N141I on a mouse background expressing one wildtype PS2 and two PS1 alleles. RESULTS: Microglial expression of PSEN2 N141I resulted in impaired γ-secretase activity as well as exaggerated inflammatory cytokine release, NFκB activity, and Aß internalization. In vivo, PS2 N141I mice showed enhanced IL-6 and TREM2 expression in brain as well as reduced branch number and length, an indication of "activated" morphology, in the absence of inflammatory stimuli. LPS intraperitoneal injection resulted in higher inflammatory gene expression in PS2 N141I mouse brain relative to controls. CONCLUSION: Our findings demonstrate that PSEN2 N141I heterozygosity is associated with disrupted innate immune homeostasis, suggesting EOFAD variants may promote disease progression through non-neuronal cells beyond canonical dysregulated Aß production.


Assuntos
Doença de Alzheimer/genética , Variação Genética/genética , Heterozigoto , Microglia/fisiologia , Fenótipo , Presenilina-2/genética , Doença de Alzheimer/patologia , Animais , Linhagem Celular Tumoral , Células Cultivadas , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/patologia
5.
J Clin Lipidol ; 12(5): 1169-1178, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30017468

RESUMO

BACKGROUND: Cerebrotendinous xanthomatosis (CTX) is a rare disorder due to defective sterol 27-hydroxylase causing a lack of chenodeoxycholic acid (CDCA) production and high plasma cholestanol levels. OBJECTIVES: Our objective was to review the diagnosis and treatment results in 43 CTX cases. METHODS: We conducted a careful review of the diagnosis, laboratory values, treatment, and clinical course in 43 CTX cases. RESULTS: The mean age at diagnosis was 32 years; the average follow-up was 8 years. Cases had the following conditions: 53% chronic diarrhea, 74% cognitive impairment, 70% premature cataracts, 77% tendon xanthomas, 81% neurologic disease, and 7% premature cardiovascular disease. The mean serum cholesterol concentration was 190 mg/dL; the mean plasma cholestanol level was 32 mg/L (normal <5.0 mg/L), which decreased to 6.0 mg/L (-81%) with CDCA therapy generally given as 250 mg orally 3 times daily. Of those tested on treatment, 63% achieved cholestanol levels of <5.0 mg/L; 91% had normal liver enzyme levels; none had significant liver problems after dose adjustment. Treatment improved symptoms in 57% at follow-up, but 20% with advanced disease continued to deteriorate. In the United States, CDCA has been approved for gallstone dissolution, but not for CTX despite long-term efficacy and safety data. CONCLUSIONS: Health care providers seeing young patients with tendon xanthomas and relatively normal cholesterol levels, especially those with cataracts and learning problems, should consider the diagnosis of CTX so they can receive treatment. CDCA should receive regulatory approval to facilitate therapy for the prevention of the complications of the disease.


Assuntos
Xantomatose Cerebrotendinosa/diagnóstico , Xantomatose Cerebrotendinosa/terapia , Adulto , Criança , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Resultado do Tratamento , Adulto Jovem
6.
Am J Med Genet A ; 176(1): 235-240, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29090527

RESUMO

Cerebellar ataxia, areflexia, pes cavus, optic atrophy, and sensorineural hearing loss (CAPOS) syndrome (OMIM# 601338) is a rare autosomal dominant disorder characterized by episodic, fever-induced ataxic encephalopathy in childhood with residual symptoms. All identified patients have the same heterozygous missense variant c.2452G>A (p.Glu818Lys) in the ATP1A3 gene, encoding Na+ /K+ ATPase α3. We describe a large CAPOS pedigree with three generations of affected members, the first ascertained in the United States. Deafness, optic atrophy, and pes cavus were present in all three members of the family evaluated. In addition, one of the affected individuals experienced markedly worsening features during her three pregnancies and in the immediate postpartum period, a potential element of the natural history of CAPOS previously unreported. We conclude that the triggering factors and clinical spectrum of pathogenic ATP1A3 variants may be broader than previously described. Targeted sequencing of ATP1A3 should be considered in any patient presenting with cerebellar ataxia triggered by febrile illness, or pregnancy and delivery, especially in the presence of sensorineural hearing loss, optic atrophy, pes cavus, or early childhood history of acute encephalopathic ataxia. Prophylactic administration of acetazolamide or flunarizine may prevent acute episodes of ataxia or mitigate neurologic symptoms, although their efficacies have not been well studied.


Assuntos
Ataxia Cerebelar/diagnóstico , Ataxia Cerebelar/genética , Deformidades Congênitas do Pé/diagnóstico , Deformidades Congênitas do Pé/genética , Perda Auditiva Neurossensorial/diagnóstico , Perda Auditiva Neurossensorial/genética , Atrofia Óptica/diagnóstico , Atrofia Óptica/genética , Fenótipo , Complicações na Gravidez , Reflexo Anormal/genética , Alelos , Pré-Escolar , Feminino , Estudos de Associação Genética , Genótipo , Humanos , Lactente , Masculino , Linhagem , Gravidez , ATPase Trocadora de Sódio-Potássio/genética
7.
ASN Neuro ; 9(4): 1759091417716610, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28683563

RESUMO

Microglia are the primary innate immune cell type in the brain, and their dysfunction has been linked to a variety of central nervous system disorders. Human microglia are extraordinarily difficult to obtain for experimental investigation, limiting our ability to study the impact of human genetic variants on microglia functions. Previous studies have reported that microglia-like cells can be derived from human monocytes or pluripotent stem cells. Here, we describe a reproducible relatively simple method for generating microglia-like cells by first deriving embryoid body mesoderm followed by exposure to microglia relevant cytokines. Our approach is based on recent studies demonstrating that microglia originate from primitive yolk sac mesoderm distinct from peripheral macrophages that arise during definitive hematopoiesis. We hypothesized that functional microglia could be derived from human stem cells by employing BMP-4 mesodermal specification followed by exposure to microglia-relevant cytokines, M-CSF, GM-CSF, IL-34, and TGF-ß. Using immunofluorescence microscopy, flow cytometry, and reverse transcription polymerase chain reaction, we observed cells with microglia morphology expressing a repertoire of markers associated with microglia: Iba1, CX3CR1, CD11b, TREM2, HexB, and P2RY12. These microglia-like cells maintain myeloid functional phenotypes including Aß peptide phagocytosis and induction of pro-inflammatory gene expression in response to lipopolysaccharide stimulation. Addition of small molecules BIO and SB431542, previously demonstrated to drive definitive hematopoiesis, resulted in decreased surface expression of TREM2. Together, these data suggest that mesodermal lineage specification followed by cytokine exposure produces microglia-like cells in vitro from human pluripotent stem cells and that this phenotype can be modulated by factors influencing hematopoietic lineage in vitro.


Assuntos
Linhagem da Célula/fisiologia , Hematopoese/fisiologia , Glicoproteínas de Membrana/metabolismo , Microglia/metabolismo , Células-Tronco Pluripotentes/metabolismo , Receptores Imunológicos/metabolismo , Peptídeos beta-Amiloides/metabolismo , Técnicas de Cultura de Células , Fibroblastos/citologia , Fibroblastos/metabolismo , Citometria de Fluxo , Imunofluorescência , Humanos , Inflamação/metabolismo , Inflamação/patologia , Lipopolissacarídeos , Microglia/citologia , Fagocitose/fisiologia , Células-Tronco Pluripotentes/citologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
8.
J Immunol ; 192(1): 358-66, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24319262

RESUMO

Neuroinflammation occurs in acute and chronic CNS injury, including stroke, traumatic brain injury, and neurodegenerative diseases. Microglia are specialized resident myeloid cells that mediate CNS innate immune responses. Disease-relevant stimuli, such as reactive oxygen species (ROS), can influence microglia activation. Previously, we observed that p53, a ROS-responsive transcription factor, modulates microglia behaviors in vitro and in vivo, promoting proinflammatory functions and suppressing downregulation of the inflammatory response and tissue repair. In this article we describe a novel mechanism by which p53 modulates the functional differentiation of microglia both in vitro and in vivo. Adult microglia from p53-deficient mice have increased expression of the anti-inflammatory transcription factor c-Maf. To determine how p53 negatively regulates c-Maf, we examined the impact of p53 on known c-Maf regulators. MiR-155 is a microRNA that targets c-Maf. We observed that cytokine-induced expression of miR-155 was suppressed in p53-deficient microglia. Furthermore, Twist2, a transcriptional activator of c-Maf, is increased in p53-deficient microglia. We identified recognition sites in the 3' untranslated region of Twist2 mRNA that are predicted to interact with two p53-dependent microRNAs: miR-34a and miR-145. In this article, we demonstrate that miR-34a and -145 are regulated by p53 and negatively regulate Twist2 and c-Maf expression in microglia and the RAW macrophage cell line. Taken together, these findings support the hypothesis that p53 activation induced by local ROS or accumulated DNA damage influences microglia functions and that one specific molecular target of p53 in microglia is c-Maf.


Assuntos
MicroRNAs/genética , Microglia/metabolismo , Proteínas Proto-Oncogênicas c-maf/genética , Proteína Supressora de Tumor p53/metabolismo , Animais , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Linhagem Celular , Modelos Animais de Doenças , Regulação da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Knockout , MicroRNAs/metabolismo , Modelos Biológicos , Fenótipo , Proteínas Proto-Oncogênicas c-maf/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína 1 Relacionada a Twist/genética , Proteína 1 Relacionada a Twist/metabolismo
9.
Genet Med ; 15(9): 673-83, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23538602

RESUMO

The hereditary ataxias are a highly heterogeneous group of disorders phenotypically characterized by gait ataxia, incoordination of eye movements, speech, and hand movements, and usually associated with atrophy of the cerebellum. There are more than 35 autosomal dominant types frequently termed spinocerebellar ataxia and typically having adult onset. The most common subtypes are spinocerebellar ataxia 1, 2, 3, 6, and 7, all of which are nucleotide repeat expansion disorders. Autosomal recessive ataxias usually have onset in childhood; the most common subtypes are -Friedreich, ataxia-telangiectasia, ataxia with oculomotor apraxia type 1, and ataxia with oculomotor apraxia type 2. Four autosomal recessive types have dietary or biochemical treatment modalities (ataxia with vitamin E deficiency, cerebrotendinous xanthomatosis, Refsum, and coenzyme Q10 deficiency), whereas there are no specific treatments for other ataxias. Diagnostic genetic testing is complicated because of the large number of relatively uncommon subtypes with extensive phenotypic overlap. However, the best testing strategy is based on assessing relative frequencies, ethnic predilections, and recognition of associated phenotypic features such as seizures, visual loss, or associated movement abnormalities.


Assuntos
Genes Dominantes , Genes Recessivos , Degenerações Espinocerebelares/diagnóstico , Degenerações Espinocerebelares/genética , Adulto , Idade de Início , Criança , Feminino , Aconselhamento Genético , Testes Genéticos , Humanos , Fenótipo , Degenerações Espinocerebelares/epidemiologia , Degenerações Espinocerebelares/etnologia , Expansão das Repetições de Trinucleotídeos
10.
Brain ; 136(Pt 2): 508-21, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23413262

RESUMO

The ß-tropomyosin gene encodes a component of the sarcomeric thin filament. Rod-shaped dimers of tropomyosin regulate actin-myosin interactions and ß-tropomyosin mutations have been associated with nemaline myopathy, cap myopathy, Escobar syndrome and distal arthrogryposis types 1A and 2B. In this study, we expand the allelic spectrum of ß-tropomyosin-related myopathies through the identification of a novel ß-tropomyosin mutation in two clinical contexts not previously associated with ß-tropomyosin. The first clinical phenotype is core-rod myopathy, with a ß-tropomyosin mutation uncovered by whole exome sequencing in a family with autosomal dominant distal myopathy and muscle biopsy features of both minicores and nemaline rods. The second phenotype, observed in four unrelated families, is autosomal dominant trismus-pseudocamptodactyly syndrome (distal arthrogryposis type 7; previously associated exclusively with myosin heavy chain 8 mutations). In all four families, the mutation identified was a novel 3-bp in-frame deletion (c.20_22del) that results in deletion of a conserved lysine at the seventh amino acid position (p.K7del). This is the first mutation identified in the extreme N-terminus of ß-tropomyosin. To understand the potential pathogenic mechanism(s) underlying this mutation, we performed both computational analysis and in vivo modelling. Our theoretical model predicts that the mutation disrupts the N-terminus of the α-helices of dimeric ß-tropomyosin, a change predicted to alter protein-protein binding between ß-tropomyosin and other molecules and to disturb head-to-tail polymerization of ß-tropomyosin dimers. To create an in vivo model, we expressed wild-type or p.K7del ß-tropomyosin in the developing zebrafish. p.K7del ß-tropomyosin fails to localize properly within the thin filament compartment and its expression alters sarcomere length, suggesting that the mutation interferes with head-to-tail ß-tropomyosin polymerization and with overall sarcomeric structure. We describe a novel ß-tropomyosin mutation, two clinical-histopathological phenotypes not previously associated with ß-tropomyosin and pathogenic data from the first animal model of ß-tropomyosin-related myopathies.


Assuntos
Lisina/genética , Doenças Musculares/diagnóstico , Doenças Musculares/genética , Deleção de Sequência , Tropomiosina/genética , Adolescente , Adulto , Sequência de Aminoácidos , Animais , Criança , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Doenças Musculares/patologia , Tropomiosina/química , Adulto Jovem , Peixe-Zebra
11.
Glia ; 59(10): 1402-13, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21598312

RESUMO

Several neurodegenerative diseases are influenced by the innate immune response in the central nervous system (CNS). Microglia have proinflammatory and subsequently neurotoxic actions as well as anti-inflammatory functions that promote recovery and repair. Very little is known about the transcriptional control of these specific microglial behaviors. We have previously shown that in HIV-associated neurocognitive disorders (HAND), the transcription factor p53 accumulates in microglia and that microglial p53 expression is required for the in vitro neurotoxicity of the HIV coat glycoprotein gp120. These findings suggested a novel function for p53 in regulating microglial activation. Here, we report that in the absence of p53, microglia demonstrate a blunted response to interferon-γ, failing to increase expression of genes associated with classical macrophage activation or secrete proinflammatory cytokines. Microarray analysis of global gene expression profiles revealed increased expression of genes associated with anti-inflammatory functions, phagocytosis, and tissue repair in p53 knockout (p53(-/-)) microglia compared with those cultured from strain matched p53 expressing (p53(+/+)) mice. We further observed that p53(-/-) microglia demonstrate increased phagocytic activity in vitro and expression of markers for alternative macrophage activation both in vitro and in vivo. In HAND brain tissue, the alternative activation marker CD163 was expressed in a separate subset of microglia than those demonstrating p53 accumulation. These data suggest that p53 influences microglial behavior, supporting the adoption of a proinflammatory phenotype, while p53 deficiency promotes phagocytosis and gene expression associated with alternative activation and anti-inflammatory functions.


Assuntos
Córtex Cerebral/patologia , Regulação da Expressão Gênica/genética , Microglia/metabolismo , Fenótipo , Proteína Supressora de Tumor p53/metabolismo , Análise de Variância , Animais , Antígenos CD/metabolismo , Apoptose/efeitos dos fármacos , Apoptose/genética , Linhagem Celular Transformada , Córtex Cerebral/citologia , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/metabolismo , Transtornos Cognitivos/virologia , Ensaio de Imunoadsorção Enzimática/métodos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Proteína gp120 do Envelope de HIV/farmacologia , Infecções por HIV/induzido quimicamente , Ataque Isquêmico Transitório/metabolismo , Ataque Isquêmico Transitório/patologia , Masculino , Camundongos , Camundongos Knockout , Microglia/efeitos dos fármacos , Análise de Sequência com Séries de Oligonucleotídeos , Fagocitose/efeitos dos fármacos , Fatores de Tempo , Proteína Supressora de Tumor p53/deficiência , Proteína Supressora de Tumor p53/genética
12.
PLoS One ; 5(12): e15743, 2010 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-21206757

RESUMO

Presenilin 1 (PS1) and Presenilin 2 (PS2) are the enzymatic component of the γ-secretase complex that cleaves amyloid precursor protein (APP) to release amyloid beta (Aß) peptide. PS deficiency in mice results in neuroinflammation and neurodegeneration in the absence of accumulated Aß. We hypothesize that PS influences neuroinflammation through its γ-secretase action in CNS innate immune cells. We exposed primary murine microglia to a pharmacological γ-secretase inhibitor which resulted in exaggerated release of TNFα and IL-6 in response to lipopolysaccharide. To determine if this response was mediated by PS1, PS2 or both we used shRNA to knockdown each PS in a murine microglia cell line. Knockdown of PS1 did not lead to decreased γ-secretase activity while PS2 knockdown caused markedly decreased γ-secretase activity. Augmented proinflammatory cytokine release was observed after knockdown of PS2 but not PS1. Proinflammatory stimuli increased microglial PS2 gene transcription and protein in vitro. This is the first demonstration that PS2 regulates CNS innate immunity. Taken together, our findings suggest that PS2 is the predominant γ-secretase in microglia and modulates release of proinflammatory cytokines. We propose PS2 may participate in a negative feedback loop regulating inflammatory behavior in microglia.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Citocinas/metabolismo , Microglia/metabolismo , Presenilina-2/metabolismo , Animais , Linhagem Celular , Sistema Nervoso Central/metabolismo , Regulação Enzimológica da Expressão Gênica , Imunidade Inata , Interleucina-6/metabolismo , Lipopolissacarídeos/metabolismo , Camundongos , Presenilina-1/genética , Fator de Necrose Tumoral alfa/metabolismo
13.
J Neuroimmune Pharmacol ; 2(4): 359-70, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18040854

RESUMO

HIV-associated dementia (HAD) is a chronic neuroinflammatory disease that remains an important clinical problem without available rational treatment. As HIV does not infect neurons, the pathogenesis of HAD is thought to be secondary to the impact of infected leukocytes, including parenchymal microglia, which can secrete inflammatory mediators and viral products that alter the function of surrounding uninfected cells. We previously reported that the transcription factor p53 accumulates in neurons, microglia, and astrocytes of HAD patients. We have also shown that microglia from p53-deficient mice fail to induce neurotoxicity in response to the HIV coat protein gp120 in a coculture system, supporting the hypothesis that p53 plays a pathogenic role in the chronic neuroinflammatory component of HIV-associated neurodegeneration. We analyzed the extent and cell type specificity of p53 accumulation in subcortical white matter of ten AIDS patients that had previously been shown to demonstrate white matter p53 accumulation. To determine if p53 activation functioned to alter gene expression in HAD, cortical tissue sections were also immunolabeled for the p53 target genes Bax and p21(WAF1). These studies reveal that microglia, astrocytes, and oligodendrocytes all demonstrate p53 activation in response to HIV infection. We observed immunoreactivity for both Bax and p21(WAF1) in neurons and glia from patients demonstrating elevated p53 immunoreactivity. Our findings demonstrate that widespread increased p53 expression is present in HAD. Activation of p53 mediated pathways in the glia of HAD patients may contribute to the neuroinflammatory processes that promote neurodegeneration by inhibiting glial proliferation and/or promoting glial cell dysfunction.


Assuntos
Complexo AIDS Demência/genética , Complexo AIDS Demência/metabolismo , Infecções do Sistema Nervoso Central/metabolismo , Regulação Viral da Expressão Gênica/fisiologia , Neuroglia/metabolismo , Neuroglia/virologia , Proteína Supressora de Tumor p53/metabolismo , Complexo AIDS Demência/virologia , Adulto , Astrócitos/metabolismo , Astrócitos/patologia , Astrócitos/virologia , Infecções do Sistema Nervoso Central/genética , Infecções do Sistema Nervoso Central/virologia , Feminino , Marcação de Genes , Células HeLa , Humanos , Masculino , Microglia/metabolismo , Microglia/patologia , Microglia/virologia , Pessoa de Meia-Idade , Neuroglia/patologia , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Oligodendroglia/virologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/fisiologia
14.
FASEB J ; 18(10): 1141-3, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15155568

RESUMO

HIV infection of the central nervous system leads to HIV-associated dementia (HAD) in a substantial subset of infected individuals. The pathogenesis of neuronal dysfunction in HAD is not well understood, but previous studies have demonstrated evidence for activation of apoptotic pathways. The tumor suppressor transcription factor p53 is an apical mediator of neuronal apoptosis following a variety of injurious stimuli. To determine whether p53 participates in HAD, we exposed cerebrocortical cultures from wild-type and p53 deficient mice to the neurotoxic HIV envelope protein gp120. Using neuron/microglia co-culture of mixed p53 genotype, we observed that both neurons and microglia require p53 for gp120 induced neuronal apoptosis. Additionally, accumulation of p53 protein in neurons was recently reported in post-mortem cortical tissue from a small group of HAD patients. Using a much larger cohort of HAD cases, we extend this finding and report that p53 protein also increases in non-neuronal cells, including microglia. Taken together these findings demonstrate a novel role for p53 in the microglial response to gp120. Additionally, these findings, in conjunction with a recent report that monocytes expressing HIV-Tat also secrete neurotoxins that promote p53 activation, suggest that distinct HIV proteins may converge on the p53 pathway to promote neurotoxicity.


Assuntos
Complexo AIDS Demência/metabolismo , Lobo Frontal/patologia , Proteína gp120 do Envelope de HIV/fisiologia , Microglia/patologia , Neurônios/metabolismo , Complexo AIDS Demência/patologia , Animais , Apoptose , Biomarcadores , Cálcio/análise , Células Cultivadas , Técnicas de Cocultura , Lobo Frontal/metabolismo , Genes p53 , Humanos , Camundongos , Camundongos Knockout , Microglia/metabolismo , Degeneração Neural , Neurônios/patologia , Receptores CCR5/fisiologia , Proteínas Recombinantes/farmacologia , Transdução de Sinais , Método Simples-Cego
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA