Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Elife ; 112022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-36039640

RESUMO

Fascin is an important regulator of F-actin bundling leading to enhanced filopodia assembly. Fascin is also overexpressed in most solid tumours where it supports invasion through control of F-actin structures at the periphery and nuclear envelope. Recently, fascin has been identified in the nucleus of a broad range of cell types but the contributions of nuclear fascin to cancer cell behaviour remain unknown. Here, we demonstrate that fascin bundles F-actin within the nucleus to support chromatin organisation and efficient DDR. Fascin associates directly with phosphorylated Histone H3 leading to regulated levels of nuclear fascin to support these phenotypes. Forcing nuclear fascin accumulation through the expression of nuclear-targeted fascin-specific nanobodies or inhibition of Histone H3 kinases results in enhanced and sustained nuclear F-actin bundling leading to reduced invasion, viability, and nuclear fascin-specific/driven apoptosis. These findings represent an additional important route through which fascin can support tumourigenesis and provide insight into potential pathways for targeted fascin-dependent cancer cell killing.


Assuntos
Actinas , Neoplasias , Actinas/metabolismo , Proteínas de Transporte , Sobrevivência Celular , Histonas , Humanos , Proteínas dos Microfilamentos , Neoplasias/patologia
2.
Methods Mol Biol ; 1749: 375-386, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29526011

RESUMO

Cell migration plays a key role in many physiological and pathological conditions during which cells migrate primarily in the 3D environments formed by tissues. Microfluidics enables the design of simple devices that can mimic in a highly controlled manner the geometry and dimensions of the interstices encountered by cells in the body. Here we describe the design, fabrication, and implementation of an array of channels with a range of cross sections to investigate migration of cells and cell clusters through confined spaces. By combining this assay with a motorized microscope stage, image data can be acquired with high throughput to determine the physical limits of migration in confined environments and their biological origin.


Assuntos
Movimento Celular/fisiologia , Microfluídica/métodos , Linhagem Celular Tumoral , Feminino , Humanos
3.
Nucleus ; 8(2): 126-133, 2017 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-28060557

RESUMO

The regulation of nuclear shape and deformability is a key factor in controlling diverse events from embryonic development to cancer cell metastasis, but the mechanisms governing this process are still unclear. Our recent study demonstrated an unexpected role for the F-actin bundling protein fascin in controlling nuclear plasticity through a direct interaction with Nesprin-2. Nesprin-2 is a component of the LINC complex that is known to couple the F-actin cytoskeleton to the nuclear envelope. We demonstrated that fascin, which is predominantly associated with peripheral F-actin rich filopodia, binds directly to Nesprin-2 at the nuclear envelope in a range of cell types. Depleting fascin or specifically blocking the fascin-Nesprin-2 complex leads to defects in nuclear polarization, movement and cell invasion. These studies reveal a novel role for an F-actin bundling protein in control of nuclear plasticity and underline the importance of defining nuclear-associated roles for F-actin binding proteins in future.


Assuntos
Proteínas dos Microfilamentos/metabolismo , Animais , Proteínas de Transporte/metabolismo , Citoesqueleto/metabolismo , Humanos , Membrana Nuclear/metabolismo , Transporte Proteico
4.
Dev Cell ; 38(4): 371-83, 2016 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-27554857

RESUMO

Fascin is an F-actin-bundling protein shown to stabilize filopodia and regulate adhesion dynamics in migrating cells, and its expression is correlated with poor prognosis and increased metastatic potential in a number of cancers. Here, we identified the nuclear envelope protein nesprin-2 as a binding partner for fascin in a range of cell types in vitro and in vivo. Nesprin-2 interacts with fascin through a direct, F-actin-independent interaction, and this binding is distinct and separable from a role for fascin within filopodia at the cell periphery. Moreover, disrupting the interaction between fascin and nesprin-2 C-terminal domain leads to specific defects in F-actin coupling to the nuclear envelope, nuclear movement, and the ability of cells to deform their nucleus to invade through confined spaces. Together, our results uncover a role for fascin that operates independently of filopodia assembly to promote efficient cell migration and invasion.


Assuntos
Proteínas de Transporte/metabolismo , Movimento Celular/fisiologia , Proteínas dos Microfilamentos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Pseudópodes/fisiologia , Células 3T3 , Actinas/metabolismo , Animais , Linhagem Celular Tumoral , Drosophila , Células HeLa , Humanos , Camundongos , Complexos Multiproteicos/metabolismo , Invasividade Neoplásica/patologia , Neoplasias/patologia , Membrana Nuclear/metabolismo , Ligação Proteica/fisiologia , Estrutura Terciária de Proteína
5.
J Cell Sci ; 128(24): 4601-14, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26542021

RESUMO

Fascin is an actin-binding and bundling protein that is highly upregulated in most epithelial cancers. Fascin promotes cell migration and adhesion dynamics in vitro and tumour cell metastasis in vivo. However, potential non-actin bundling roles for fascin remain unknown. Here, we show for the first time that fascin can directly interact with the microtubule cytoskeleton and that this does not depend upon fascin-actin bundling. Microtubule binding contributes to fascin-dependent control of focal adhesion dynamics and cell migration speed. We also show that fascin forms a complex with focal adhesion kinase (FAK, also known as PTK2) and Src, and that this signalling pathway lies downstream of fascin-microtubule association in the control of adhesion stability. These findings shed light on new non actin-dependent roles for fascin and might have implications for the design of therapies to target fascin in metastatic disease.


Assuntos
Proteínas de Transporte/metabolismo , Movimento Celular/fisiologia , Proteínas dos Microfilamentos/metabolismo , Microtúbulos/metabolismo , Proteínas de Transporte/genética , Adesão Celular/fisiologia , Quinase 1 de Adesão Focal/genética , Quinase 1 de Adesão Focal/metabolismo , Células HeLa , Humanos , Proteínas dos Microfilamentos/genética , Microtúbulos/genética
6.
Microelectron Eng ; 144: 42-45, 2015 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-26412914

RESUMO

During metastasis, cancerous cells leave the primary tumour, pass into the circulatory system, and invade into new tissues. To migrate through the wide variety of environments they encounter, the cells must be able to remodel their cell shape efficiently to squeeze through small gaps in the extracellular matrix or extravasate into the blood stream or lymphatic system. Several studies have shown that the nucleus is the main limiting factor to migration through small gaps (Wolf et al., 2013; Harada et al., 2014; Mak et al., 2013). To understand the physical limits of cancer cell translocation in confined environments, we have fabricated a microfluidic device to study their ability to adapt their nuclear and cellular shape when passing through small gaps. The device is open access for ease of use and enables examination of the effect of different levels of spatial confinement on cell behaviour and morphology simultaneously. The results show that increasing cell confinement decreases the ability of cells to translocate into small gaps and that cells cannot penetrate into the microchannels below a threshold cross-section.

7.
Mol Biol Cell ; 26(10): 1901-17, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25808493

RESUMO

Fascin, a highly conserved actin-bundling protein, localizes and functions at new cellular sites in both Drosophila and multiple mammalian cell types. During Drosophila follicle development, in addition to being cytoplasmic, Fascin is in the nuclei of the germline-derived nurse cells during stages 10B-12 (S10B-12) and at the nuclear periphery during stage 13 (S13). This localization is specific to Fascin, as other actin-binding proteins, Villin and Profilin, do not exhibit the same subcellular distribution. In addition, localization of fascin1 to the nucleus and nuclear periphery is observed in multiple mammalian cell types. Thus the regulation and function of Fascin at these new cellular locations is likely to be highly conserved. In Drosophila, loss of prostaglandin signaling causes a global reduction in nuclear Fascin and a failure to relocalize to the nuclear periphery. Alterations in nuclear Fascin levels result in defects in nucleolar morphology in both Drosophila follicles and cultured mammalian cells, suggesting that nuclear Fascin plays an important role in nucleolar architecture. Given the numerous roles of Fascin in development and disease, including cancer, our novel finding that Fascin has functions within the nucleus sheds new light on the potential roles of Fascin in these contexts.


Assuntos
Proteínas de Transporte/metabolismo , Nucléolo Celular/ultraestrutura , Proteínas dos Microfilamentos/metabolismo , Proteínas Nucleares/metabolismo , Folículo Ovariano/fisiologia , Prostaglandinas/fisiologia , Transdução de Sinais , Animais , Proteínas de Transporte/fisiologia , Drosophila , Feminino , Humanos , Proteínas dos Microfilamentos/fisiologia , Folículo Ovariano/metabolismo , Folículo Ovariano/ultraestrutura , Transporte Proteico
8.
BMC Biol ; 10: 72, 2012 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-22883572

RESUMO

BACKGROUND: Fascin-1 is an actin crosslinking protein that is important for the assembly of cell protrusions in neurons, skeletal and smooth muscle, fibroblasts, and dendritic cells. Although absent from most normal adult epithelia, fascin-1 is upregulated in many human carcinomas, and is associated with poor prognosis because of its promotion of carcinoma cell migration, invasion, and metastasis. Rac and Cdc42 small guanine triphosphatases have been identified as upstream regulators of the association of fascin-1 with actin, but the possible role of Rho has remained obscure. Additionally, experiments have been hampered by the inability to measure the fascin-1/actin interaction directly in intact cells. We investigated the hypothesis that fascin-1 is a functional target of Rho in normal and carcinoma cells, using experimental approaches that included a novel fluorescence resonance energy transfer (FRET)/fluorescence lifetime imaging (FLIM) method to measure the interaction of fascin-1 with actin. RESULTS: Rho activity modulates the interaction of fascin-1 with actin, as detected by a novel FRET method, in skeletal myoblasts and human colon carcinoma cells. Mechanistically, Rho regulation depends on Rho kinase activity, is independent of the status of myosin II activity, and is not mediated by promotion of the fascin/PKC complex. The p-Lin-11/Isl-1/Mec-3 kinases (LIMK), LIMK1 and LIMK2, act downstream of Rho kinases as novel binding partners of fascin-1, and this complex regulates the stability of filopodia. CONCLUSIONS: We have identified a novel activity of Rho in promoting a complex between fascin-1 and LIMK1/2 that modulates the interaction of fascin-1 with actin. These data provide new mechanistic insight into the intracellular coordination of contractile and protrusive actin-based structures. During the course of the study, we developed a novel FRET method for analysis of the fascin-1/actin interaction, with potential general applicability for analyzing the activities of actin-binding proteins in intact cells.


Assuntos
Actinas/metabolismo , Proteínas de Transporte/metabolismo , Quinases Lim/metabolismo , Proteínas dos Microfilamentos/metabolismo , Pseudópodes/metabolismo , Transdução de Sinais , Proteína rhoA de Ligação ao GTP/metabolismo , Animais , Linhagem Celular , Movimento Celular , Ativação Enzimática , Transferência Ressonante de Energia de Fluorescência , Humanos , Isoenzimas/metabolismo , Camundongos , Microscopia Confocal , Modelos Biológicos , Miosinas/metabolismo , Ligação Proteica , Proteína Quinase C/metabolismo , Imagem com Lapso de Tempo , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP/antagonistas & inibidores
9.
Eur J Cell Biol ; 91(11-12): 824-33, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22705211

RESUMO

Cell adhesion plays an essential role in development and homeostasis, but is also a key regulator of many diseases such as cancer and immune dysfunction. Numerous studies over the past three decades have revealed a wealth of information detailing signalling molecules required for cell adhesion to two-dimensional surfaces. However, in vivo many cells are completely surrounded by matrix and this will very likely influence the size, composition and dynamics of adhesive structures. The study of adhesion in cells within three-dimensional environments is still in its infancy, thus the role and regulation of adhesions in these complex environments remains unclear. The recent development of new experimental models coupled with significant advances in cell imaging approaches have provided platforms for researchers to begin to dissect adhesion signalling in cells in 3D matrices. Here we summarise the recent insights in cell adhesion formation and regulation in 3D model systems and the imaging approaches used to analyse these events.


Assuntos
Adesão Celular , Matriz Extracelular/química , Animais , Matriz Extracelular/fisiologia , Recuperação de Fluorescência Após Fotodegradação , Transferência Ressonante de Energia de Fluorescência , Microscopia Confocal , Microscopia de Fluorescência por Excitação Multifotônica , Conformação Molecular
10.
J Cell Biol ; 197(4): 477-86, 2012 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-22564415

RESUMO

Fascin is an evolutionarily conserved actin-binding protein that plays a key role in forming filopodia. It is widely thought that this function involves fascin directly bundling actin filaments, which is controlled by an N-terminal regulatory serine residue. In this paper, by studying cellular processes in Drosophila melanogaster that require fascin activity, we identify a regulatory residue within the C-terminal region of the protein (S289). Unexpectedly, although mutation (S289A) of this residue disrupted the actin-bundling capacity of fascin, fascin S289A fully rescued filopodia formation in fascin mutant flies. Live imaging of migrating macrophages in vivo revealed that this mutation restricted the localization of fascin to the distal ends of filopodia. The corresponding mutation of human fascin (S274) similarly affected its interaction with actin and altered filopodia dynamics within carcinoma cells. These data reveal an evolutionarily conserved role for this regulatory region and unveil a function for fascin, uncoupled from actin bundling, at the distal end of filopodia.


Assuntos
Actinas/metabolismo , Proteínas de Transporte/metabolismo , Proteínas dos Microfilamentos/metabolismo , Pseudópodes/fisiologia , Animais , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Drosophila melanogaster , Humanos , Macrófagos/metabolismo , Proteínas dos Microfilamentos/genética , Serina/genética , Serina/metabolismo
11.
Int J Biochem Cell Biol ; 42(10): 1614-7, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20601080

RESUMO

Fascin is a 55 kDa actin-bundling protein and is an important regulatory element in the maintenance and stability of parallel bundles of filamentous actin in a variety of cellular contexts. Regulation of fascin function is under the control of a number of different signalling pathways that act in concert to spatially regulate the actin-binding properties of this protein. The ability of fascin to bind and bundle actin plays a central role in the regulation of cell adhesion, migration and invasion. Fascin has received considerable attention recently as an emerging key prognostic marker of metastatic disease. Studies are now underway to better understand the precise regulation of this protein in the context of tumour progression and to investigate fascin as a potential therapeutic target for a number of forms of cancer.


Assuntos
Proteínas de Transporte/metabolismo , Citoesqueleto/metabolismo , Proteínas dos Microfilamentos/metabolismo , Neoplasias/diagnóstico , Animais , Biomarcadores Tumorais/metabolismo , Proteínas de Transporte/genética , Adesão Celular , Movimento Celular , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Humanos , Proteínas dos Microfilamentos/genética , Metástase Neoplásica , Neoplasias/patologia , Neoplasias/fisiopatologia , Prognóstico , Transdução de Sinais
12.
Eur J Haematol ; 84(5): 430-40, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20070854

RESUMO

Megakaryocytic differentiation of myelogenous leukemia cell lines induced by a number of chemical compounds mimics, in part, the physiological process that takes place in the bone marrow in response to a variety of stimuli. We have investigated the involvement of mitogen-activated protein kinases (MAPKs) [extracellular signal-regulated protein kinase (ERK1/2) and p38] and phosphoinositide 3-kinase (PI3K) signaling pathways in the differentiated phenotypes of K562 cells promoted by phorbol 12-myristate 13-acetate, staurosporine (STA), and the p38 MAPK inhibitor SB202190. In our experimental conditions, only STA-treated cells showed the phenotype of mature megakaryocytes (MKs) including GPIbalpha expression, DNA endoreduplication, and formation of platelet-like structures. We provide evidence supporting that basal activity, but not sustained activation, of ERK1/2 is required for expression of MK surface markers. Moreover, ERK1/2 signaling is not involved in cell endomitosis. The PI3K pathway exerts dual regulatory effects on K562 cell differentiation: it is intimately connected with ERK1/2 cascade to stimulate expression of surface markers and it is also necessary, but not sufficient, for polyploidization. Finally, apoptosis and megakaryocytic differentiation exhibit different sensitivity to p38 down-regulation: it is required for expression of early specific markers but is not involved in cell apoptosis. The present work with K562 cells provides new insights into the molecular mechanisms regulating MK differentiation. The results indicate that a precise orchestration of signals, including ERK1/2 and p38 MAPKs as well as PI3K pathway, is necessary for acquisition of features of mature MKs.


Assuntos
Diferenciação Celular/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Megacariócitos/citologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Ativação Enzimática , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , MAP Quinases Reguladas por Sinal Extracelular/fisiologia , Citometria de Fluxo , Humanos , Imidazóis/farmacologia , Células K562 , Megacariócitos/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/fisiologia , Inibidores de Fosfoinositídeo-3 Quinase , Poliploidia , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Transdução de Sinais , Acetato de Tetradecanoilforbol/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA