Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
EMBO J ; 40(14): e105985, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34121209

RESUMO

Autophagy is a process through which intracellular cargoes are catabolised inside lysosomes. It involves the formation of autophagosomes initiated by the serine/threonine kinase ULK and class III PI3 kinase VPS34 complexes. Here, unbiased phosphoproteomics screens in mouse embryonic fibroblasts deleted for Ulk1/2 reveal that ULK loss significantly alters the phosphoproteome, with novel high confidence substrates identified including VPS34 complex member VPS15 and AMPK complex subunit PRKAG2. We identify six ULK-dependent phosphorylation sites on VPS15, mutation of which reduces autophagosome formation in cells and VPS34 activity in vitro. Mutation of serine 861, the major VPS15 phosphosite, decreases both autophagy initiation and autophagic flux. Analysis of VPS15 knockout cells reveals two novel ULK-dependent phenotypes downstream of VPS15 removal that can be partially recapitulated by chronic VPS34 inhibition, starvation-independent accumulation of ULK substrates and kinase activity-regulated recruitment of autophagy proteins to ubiquitin-positive structures.


Assuntos
Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Autofagia/fisiologia , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Proteína VPS15 de Distribuição Vacuolar/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Autofagossomos/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Fibroblastos/metabolismo , Células HEK293 , Humanos , Camundongos , Proteômica/métodos
2.
J Mol Biol ; 433(13): 166987, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-33845085

RESUMO

Autophagy is a highly conserved degradative pathway, essential for cellular homeostasis and implicated in diseases including cancer and neurodegeneration. Autophagy-related 8 (ATG8) proteins play a central role in autophagosome formation and selective delivery of cytoplasmic cargo to lysosomes by recruiting autophagy adaptors and receptors. The LC3-interacting region (LIR) docking site (LDS) of ATG8 proteins binds to LIR motifs present in autophagy adaptors and receptors. LIR-ATG8 interactions can be highly selective for specific mammalian ATG8 family members (LC3A-C, GABARAP, and GABARAPL1-2) and how this specificity is generated and regulated is incompletely understood. We have identified a LIR motif in the Golgi protein SCOC (short coiled-coil protein) exhibiting strong binding to GABARAP, GABARAPL1, LC3A and LC3C. The residues within and surrounding the core LIR motif of the SCOC LIR domain were phosphorylated by autophagy-related kinases (ULK1-3, TBK1) increasing specifically LC3 family binding. More distant flanking residues also contributed to ATG8 binding. Loss of these residues was compensated by phosphorylation of serine residues immediately adjacent to the core LIR motif, indicating that the interactions of the flanking LIR regions with the LDS are important and highly dynamic. Our comprehensive structural, biophysical and biochemical analyses support and provide novel mechanistic insights into how phosphorylation of LIR domain residues regulates the affinity and binding specificity of ATG8 proteins towards autophagy adaptors and receptors.


Assuntos
Família da Proteína 8 Relacionada à Autofagia/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Células HEK293 , Células HeLa , Humanos , Mamíferos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Fosforilação , Ligação Proteica , Domínios Proteicos , Proteínas Serina-Treonina Quinases/metabolismo
3.
J Cell Biol ; 218(5): 1634-1652, 2019 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-30917996

RESUMO

ATG9A is a multispanning membrane protein essential for autophagy. Normally resident in Golgi membranes and endosomes, during amino acid starvation, ATG9A traffics to sites of autophagosome formation. ATG9A is not incorporated into autophagosomes but is proposed to supply so-far-unidentified proteins and lipids to the autophagosome. To address this function of ATG9A, a quantitative analysis of ATG9A-positive compartments immunoisolated from amino acid-starved cells was performed. These ATG9A vesicles are depleted of Golgi proteins and enriched in BAR-domain containing proteins, Arfaptins, and phosphoinositide-metabolizing enzymes. Arfaptin2 regulates the starvation-dependent distribution of ATG9A vesicles, and these ATG9A vesicles deliver the PI4-kinase, PI4KIIIß, to the autophagosome initiation site. PI4KIIIß interacts with ATG9A and ATG13 to control PI4P production at the initiation membrane site and the autophagic response. PI4KIIIß and PI4P likely function by recruiting the ULK1/2 initiation kinase complex subunit ATG13 to nascent autophagosomes.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Autofagossomos/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Endossomos/metabolismo , Proteínas de Membrana/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Autofagia , Proteínas Relacionadas à Autofagia/genética , Células HEK293 , Humanos , Proteínas de Membrana/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Transporte Proteico , Proteínas de Transporte Vesicular/genética
4.
Cancer Res ; 79(8): 1884-1898, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30765601

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is driven by metabolic changes in pancreatic cells caused by oncogenic mutations and dysregulation of p53. PDAC cell lines and PDAC-derived xenografts grow as a result of altered metabolic pathways, changes in stroma, and autophagy. Selective targeting and inhibition of one of these may open avenues for the development of new therapeutic strategies. In this study, we performed a genome-wide siRNA screen in a PDAC cell line using endogenous autophagy as a readout and identified several regulators of autophagy that were required for autophagy-dependent PDAC cell survival. Validation of two promising candidates, MPP7 (MAGUK p55 subfamily member 7, a scaffolding protein involved in cell-cell contacts) and MDH1 (cytosolic Malate dehydrogenase 1), revealed their role in early stages of autophagy during autophagosome formation. MPP7 was involved in the activation of YAP1 (a transcriptional coactivator in the Hippo pathway), which in turn promoted autophagy, whereas MDH1 was required for maintenance of the levels of the essential autophagy initiator serine-threonine kinase ULK1, and increased in the activity upon induction of autophagy. Our results provide a possible explanation for how autophagy is regulated by MPP7 and MDH1, which adds to our understanding of autophagy regulation in PDAC. SIGNIFICANCE: This study identifies and characterizes MPP7 and MDH1 as novel regulators of autophagy, which is thought to be responsible for pancreatic cancer cell survival.


Assuntos
Autofagia , Carcinoma Ductal Pancreático/patologia , Regulação Neoplásica da Expressão Gênica , Malato Desidrogenase/metabolismo , Proteínas de Membrana/metabolismo , Neoplasias Pancreáticas/patologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Apoptose , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Proliferação de Células , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Malato Desidrogenase/antagonistas & inibidores , Malato Desidrogenase/genética , Proteínas de Membrana/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , RNA Interferente Pequeno/genética , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Células Tumorais Cultivadas , Proteínas de Sinalização YAP
5.
J Cell Biol ; 210(1): 153-68, 2015 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-26150392

RESUMO

Although Schwann cell myelin breakdown is the universal outcome of a remarkably wide range of conditions that cause disease or injury to peripheral nerves, the cellular and molecular mechanisms that make Schwann cell-mediated myelin digestion possible have not been established. We report that Schwann cells degrade myelin after injury by a novel form of selective autophagy, myelinophagy. Autophagy was up-regulated by myelinating Schwann cells after nerve injury, myelin debris was present in autophagosomes, and pharmacological and genetic inhibition of autophagy impaired myelin clearance. Myelinophagy was positively regulated by the Schwann cell JNK/c-Jun pathway, a central regulator of the Schwann cell reprogramming induced by nerve injury. We also present evidence that myelinophagy is defective in the injured central nervous system. These results reveal an important role for inductive autophagy during Wallerian degeneration, and point to potential mechanistic targets for accelerating myelin clearance and improving demyelinating disease.


Assuntos
Autofagia , Bainha de Mielina/patologia , Traumatismos dos Nervos Periféricos/patologia , Animais , Células Cultivadas , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Metabolismo dos Lipídeos , Camundongos Transgênicos , Bainha de Mielina/fisiologia , Traumatismos dos Nervos Periféricos/enzimologia , Proteínas Proto-Oncogênicas c-jun/metabolismo , Nervo Isquiático/patologia , Serina-Treonina Quinases TOR/metabolismo , Degeneração Walleriana/patologia
6.
IUBMB Life ; 62(7): 503-8, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20552641

RESUMO

Macroautophagy, here called autophagy, is literally a "self-eating" catabolic process, which is evolutionarily conserved. Autophagy is initiated by cellular stress pathways, resulting in the sequestration or engulfment of cytosolic proteins, membranes, and organelles in a double membrane structure that fuses with endosomes and lysosomes, thus delivering the sequestered material for degradation. Autophagy is implicated in a number of human diseases, many of which can either be characterized by an imbalance in protein, organelle, or cellular homeostasis, ultimately resulting in an alteration of the autophagic response. Here, we will review the recent progress made in understanding the induction of autophagy, with emphasis on the contributions from our laboratory.


Assuntos
Autofagia/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Proteína Homóloga à Proteína-1 Relacionada à Autofagia , Proteínas Relacionadas à Autofagia , Proteínas de Transporte/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Alvo Mecanístico do Complexo 1 de Rapamicina , Proteínas de Membrana/fisiologia , Modelos Biológicos , Complexos Multiproteicos , Fagossomos/fisiologia , Fosfatidilinositol 3-Quinases/fisiologia , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Serina-Treonina Quinases TOR , Fatores de Transcrição/fisiologia
7.
Autophagy ; 5(5): 676-89, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19337031

RESUMO

Autophagy is a highly conserved degradative pathway whereby a double membrane engulfs cytoplasmic constituents to form an autophagic vacuole or autophagosome. An essential requirement for efficient autophagy is the acquisition of an adequate degradative capacity by the autophagosomes. To acquire this capacity the immature autophagic vacuoles (AVis) obtain lysosomal hydrolases by fusion with endosomes. The current models suggest that at least two types of endosomes, early and late, fuse with AVis to form mature, degradative AVds. This fusion and maturation requires proteins also involved in endosome maturation such as Rab7. However, it is not known if there are molecular requirements unique to AVi-endosome fusion. To identify and investigate the molecular requirements of this fusion we developed a cell-free fusion assay based on content mixing, which occurs after fusion of isolated AVis and different endosomal fractions. Our assay shows that isolated AVis can fuse to a similar extent in vitro with both early and late endosomes. Furthermore, fusion between autophagosomes and endosomes requires cytosolic and endosomal proteins, but does not show a nucleotide-dependence, and is partially N-ethylmaleimide sensitive. We also demonstrate that the lipidated form of the autophagosomal protein LC3 is dispensable for this fusion event.


Assuntos
Endossomos/metabolismo , Fusão de Membrana , Fagossomos/metabolismo , Animais , Autofagia/efeitos dos fármacos , Bioensaio , Citosol/ultraestrutura , Endocitose/efeitos dos fármacos , Endossomos/efeitos dos fármacos , Endossomos/ultraestrutura , Etilmaleimida/farmacologia , Humanos , Imunoprecipitação , Fusão de Membrana/efeitos dos fármacos , Proteínas Associadas aos Microtúbulos/metabolismo , Nucleotídeos/farmacologia , Células PC12 , Fagossomos/efeitos dos fármacos , Fagossomos/ultraestrutura , Transporte Proteico/efeitos dos fármacos , Ratos , Temperatura , Vacúolos/efeitos dos fármacos , Vacúolos/metabolismo , Vacúolos/ultraestrutura
8.
EMBO Rep ; 9(2): 164-70, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18188180

RESUMO

Phosphoinositides have crucial roles in cellular controls, many of which have been established through the use of small-molecule inhibitors. Here, we describe YM201636, a potent inhibitor of the mammalian class III phosphatidylinositol phosphate kinase PIKfyve, which synthesizes phosphatidylinositol 3,5-bisphosphate. Acute treatment of cells with YM201636 shows that the PIKfyve pathway is involved in the sorting of endosomal transport, with inhibition leading to the accumulation of a late endosomal compartment and blockade of retroviral exit. Inhibitor specificity is shown by the use of short interfering RNA against the target, as well as by rescue with the drug-resistant yeast orthologue Fab1. We concluded that the phosphatidylinositol 3,5-bisphosphate pathway is integral to endosome formation, determining morphology and cargo flux.


Assuntos
Aminopiridinas/farmacologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Inibidores Enzimáticos/farmacologia , Compostos Heterocíclicos com 3 Anéis/farmacologia , Fosfatos de Fosfatidilinositol/biossíntese , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Retroviridae/efeitos dos fármacos , Retroviridae/metabolismo , Aminopiridinas/química , Animais , Transporte Biológico/efeitos dos fármacos , Biomarcadores/metabolismo , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Inibidores Enzimáticos/química , Compostos Heterocíclicos com 3 Anéis/química , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Camundongos , Células NIH 3T3
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA