RESUMO
The risk of iatrogenic disease is often underestimated as a concern in contemporary medical procedures, encompassing tissue and organ transplantation, stem cell therapies, blood transfusions, and the administration of blood-derived products. In this context, despite the prevailing belief that Alzheimer's disease (AD) manifests primarily in familial and sporadic forms, our investigation reveals an unexpected transplantable variant of AD in a preclinical context, potentially indicating iatrogenic transmission in AD patients. Through adoptive transplantation of donor bone marrow stem cells carrying a mutant human amyloid precursor protein (APP) transgene into either APP-deficient knockout or normal recipient animals, we observed rapid development of AD pathological hallmarks. These pathological features were significantly accelerated and emerged within 6-9 months post transplantation and included compromised blood-brain barrier integrity, heightened cerebral vascular neoangiogenesis, elevated brain-associated ß-amyloid levels, and cognitive impairment. Furthermore, our findings underscore the contribution of ß-amyloid burden originating outside of the central nervous system to AD pathogenesis within the brain. We conclude that stem cell transplantation from donors harboring a pathogenic mutant allele can effectively transfer central nervous system diseases to healthy recipients, mirroring the pathogenesis observed in the donor. Consequently, our observations advocate for genomic sequencing of donor specimens prior to tissue, organ, or stem cell transplantation therapies, as well as blood transfusions and blood-derived product administration, to mitigate the risk of iatrogenic diseases.
Assuntos
Doença de Alzheimer , Animais , Humanos , Camundongos , Doença de Alzheimer/genética , Doença de Alzheimer/terapia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Transplante de Células-Tronco/efeitos adversos , Doença Iatrogênica , Camundongos Transgênicos , Modelos Animais de DoençasRESUMO
Cell-based cancer immunotherapy has achieved significant advancements, providing a source of hope for cancer patients. Notwithstanding the considerable progress in cell-based immunotherapy, the persistently low response rates and the exorbitant costs associated with their implementation still present a formidable challenge in clinical settings. In the landscape of cell-based cancer immunotherapies, an uncharted territory involves Type 2 innate lymphoid cells (ILC2s) and interleukin-33 (IL-33) which promotes ILC2 functionality, recognized for their inherent ability to enhance immune responses. Recent discoveries regarding their role in actuating cytolytic T lymphocyte responses, including curbing tumor growth rates and hindering metastasis, have added a new dimension to our understanding of the IL-33/ILC2 axis. These recent insights may hold significant promise for ILC2 cell-based immunotherapy. Nevertheless, the prospect of adoptively transferring ILC2s to confer immune protection against tumors has yet to be investigated. The present study addresses this hypothesis, revealing that ILC2s isolated from the lungs of tumor-bearing mice, and tumor infiltrating ILC2s when adoptively transferred after tumor establishment at a ratio of one ILC2 per sixty tumor cells, leads to an influx of tumor infiltrating CD4+ and CD8+ T lymphocytes as well as tumor infiltrating eosinophils resulting in a remarkable reduction in tumor growth. Moreover, we find that post-adoptive transfer of ILC2s, the number of tumor infiltrating ILC2s is inversely proportional to tumor size. Finally, we find corollaries of the IL-33/ILC2 axis enhancing the infiltration of eosinophils in human prostate carcinomas patients' expressing high levels of IL-33 versus those expressing low levels of IL-33. Our results underscore the heightened efficacy of adoptively transferred ILC2s compared to alternative approaches, revealing an approximately one hundred fifty-fold superiority on a cell-per-cell basis over CAR T-cells in the specific targeting and elimination of tumors within the same experimental model. Overall, this study demonstrates the functional significance of ILC2s in cancer immunosurveillance and provides the proof of concept of the potential utility of ILC2 cell-based cancer immunotherapies.
Assuntos
Imunidade Inata , Neoplasias , Masculino , Humanos , Camundongos , Animais , Citocinas , Interleucina-33 , Linfócitos , Neoplasias/terapiaRESUMO
Type 2 innate lymphoid cells (ILC2s) perform vital functions in orchestrating humoral immune responses, facilitating tissue remodelling, and ensuring tissue homeostasis. Additionally, in a role that has garnered considerably less attention, ILC2s can also enhance Th1-related cytolytic T lymphocyte immune responses against tumours. Studies have thus far generally failed to address the mystery of how one ILC2 cell-type can participate in a multiplicity of functions. Here we utilized single cell RNA sequencing analysis to create the first comprehensive atlas of naïve and tumour-associated lung ILC2s and discover multiple unique subtypes of ILC2s equipped with developmental gene programs that become skewed during tumour expansion favouring inflammation, antigen processing, immunological memory and Th1-related anti-tumour CTL responses. The discovery of these new subtypes of ILC2s challenges current paradigms of ILC2 biology and provides an explanation for their diversity of function.
Assuntos
Imunidade Inata , Neoplasias , Humanos , Linfócitos , Pulmão/patologia , Inflamação/patologia , Neoplasias/genética , Neoplasias/patologiaRESUMO
Curcuphenol, a common component of the culinary spices, naturally found in marine invertebrates and plants, has been identified as a novel candidate for reversing immune escape by restoring expression of the antigen presentation machinery (APM) in invasive cancers, thereby resurrecting the immune recognition of metastatic tumours. Two synthetic curcuphenol analogues, were prepared by informed design that demonstrated consistent induction of APM expression in metastatic prostate and lung carcinoma cells. Both analogues were subsequently found to possess a previously undescribed histone deacetylase (HDAC)-enhancing activity. Remarkably, the H3K27ac ChIPseq analysis of curcuphenol-treated cells reveals that the induced epigenomic marks closely resemble the changes in genome-wide pattern observed with interferon-γ, a cytokine instrumental for orchestrating innate and adaptive immunity. These observations link dietary components to modifying epigenetic programs that modulate gene expression guiding poised immunity.
RESUMO
Genetic and epigenetic events have been implicated in the downregulation of the cellular antigen processing and presentation machinery (APM), which in turn, has been associated with cancer evasion of the immune system. When these essential components are lacking, cancers develop the ability to subvert host immune surveillance allowing cancer cells to become invisible to the immune system and, in turn, promote cancer metastasis. Here we describe and validate the first high-throughput cell-based screening assay to identify chemical extracts and unique chemical entities that reverse the downregulation of APM components in cell lines derived from metastatic tumours. Through the screening of a library of 480 marine invertebrate extracts followed by bioassay-guided fractionation, curcuphenol, a common sesquiterpene phenol derived from turmeric, was identified as the active compound of one of the extracts. We demonstrate that curcuphenol induces the expression of the APM components, TAP-1 and MHC-I molecules, in cell lines derived from both metastatic prostate and lung carcinomas. Turmeric and curcumins that contain curcuphenol have long been utilized not only as a spice in the preparation of food, but also in traditional medicines for treating cancers. The remarkable discovery that a common component of spices can increase the expression of APM components in metastatic tumour cells and, therefore reverse immune-escape mechanisms, provides a rationale for the development of foods and advanced nutraceuticals as therapeutic candidates for harnessing the power of the immune system to recognize and destroy metastatic cancers.
RESUMO
Cell surface calcium (Ca2+) channels permit Ca2+ ion influx, with Ca2+ taking part in cellular functions such as proliferation, survival, and activation. The expression of voltage-dependent Ca2+ (CaV) channels may modulate the growth of hematologic cancers. Profile analysis of Ca2+ channels, with a focus on the Ca2+ release-activated Ca2+ (CRAC) and L-type CaV channels, was performed on RNA sequencing data from lymphoma cell lines and samples derived from patients with diffuse large B cell lymphoma (DLBCL). CaV1.2 expression was found to be elevated in classical Hodgkin lymphoma (CHL) cell lines when compared to other B cell lymphoma cell lines. In contrast, CHL exhibited reduced expression of ORAI2 and STIM2. In our differential expression analysis comparing activated B cell-like DLBCL (ABC-DLBCL) and germinal centre B cell-like DLBCL (GCB-DLBCL) patient samples, ABC-DLBCL revealed stronger expression of CaV1.3, whereas CaV1.1, CaV1.2, and CaV1.4 showed greater expression levels in GCB-DLBCL. Interestingly, no differences in ORAI/STIM expression were noted in the patient samples. As Ca2+ is known to bind to calmodulin, leading to calcineurin activation and the passage of nuclear factor of activated T cells (NFAT) to the cell nucleus, pathways for calcineurin, calmodulin, NFAT, and Ca2+ signaling were also analyzed by gene set enrichment analysis. The NFAT and Ca2+ signaling pathways were found to be upregulated in the CHL cell lines relative to other B cell lymphoma cell lines. Furthermore, the calmodulin and Ca2+ signaling pathways were shown to be downregulated in the ABC-DLBCL patient samples. The findings of this study suggest that L-type CaV channels and Ca2+-related pathways could serve as differentiating components for biologic therapies in targeted lymphoma treatments.
RESUMO
Emerging cancers are sculpted by neo-Darwinian selection for superior growth and survival but minimal immunogenicity; consequently, metastatic cancers often evolve common genetic and epigenetic signatures to elude immune surveillance. Immune subversion by metastatic tumours can be achieved through several mechanisms; one of the most frequently observed involves the loss of expression or mutation of genes composing the MHC-I antigen presentation machinery (APM) that yields tumours invisible to Cytotoxic T lymphocytes, the key component of the adaptive cellular immune response. Fascinating ethnographic and experimental findings indicate that cannabinoids inhibit the growth and progression of several categories of cancer; however, the mechanisms underlying these observations remain clouded in uncertainty. Here, we screened a library of cannabinoid compounds and found molecular selectivity amongst specific cannabinoids, where related molecules such as Δ9-tetrahydrocannabinol, cannabidiol, and cannabigerol can reverse the metastatic immune escape phenotype in vitro by inducing MHC-I cell surface expression in a wide variety of metastatic tumours that subsequently sensitizing tumours to T lymphocyte recognition. Remarkably, H3K27Ac ChIPseq analysis established that cannabigerol and gamma interferon induce overlapping epigenetic signatures and key gene pathways in metastatic tumours related to cellular senescence, as well as APM genes involved in revealing metastatic tumours to the adaptive immune response. Overall, the data suggest that specific cannabinoids may have utility in cancer immunotherapy regimens by overcoming immune escape and augmenting cancer immune surveillance in metastatic disease. Finally, the fundamental discovery of the ability of cannabinoids to alter epigenetic programs may help elucidate many of the pleiotropic medicinal effects of cannabinoids on human physiology.
Assuntos
Canabinoides , Neoplasias , Humanos , Evasão da Resposta Imune , Imunidade Adaptativa , Canabinoides/farmacologiaRESUMO
BACKGROUND: Cognitive decline leading to dementia, accompanied by the accumulation of amyloid-beta (Aß) in neuritic plaques together with the appearance of neurofibrillary tangles (NFT) composed of hyperphosphorylated tau protein (tau), are previously noted hallmarks of Alzheimer's disease (AD). We previously discovered hypervascularity in brain specimens from AD patients and consistent with this observation, we demonstrated that overexpression of Aß drives cerebrovascular neoangiogenesis leading to hypervascularity and coincident tight-junction disruption and blood-brain barrier (BBB) leakiness in animal models of AD. We subsequently demonstrated that amyloid plaque burden and cerebrovascular pathogenesis subside when pro-angiogenic Aß levels are reduced. Based on these data, we propose a paradigm of AD etiology where, as a compensatory response to impaired cerebral blood flow (CBF), Aß triggers pathogenic cerebrovascular neoangiogenesis that underlies the conventional hallmarks of AD. Consequently, here we present evidence that repurposing anti-cancer drugs to modulate cerebrovascular neoangiogenesis, rather than directly targeting the amyloid cascade, may provide an effective treatment for AD and related vascular diseases of the brain. METHODS: We explored whether the anti-cancer drug, Axitinib, a small molecule tyrosine kinase inhibitor that targets vascular endothelial growth factor receptors (VEGFR) can inhibit aberrant cerebrovascular neoangiogenic changes, reduce Aß deposits and reverse cognitive decline in an animal model of AD. One month post-treatment with Axitinib, we employed a battery of tests to assess cognition and memory in aged Tg2576 AD mice and used molecular analysis to demonstrate reduction of amyloid plaques, BBB leakage, hypervascularity and associated disease pathology. FINDINGS: Targeting the pro-angiogenic pathway in AD using the cancer drug, Axitinib, dramatically reduced cerebrovascular neoangiogenesis, restored BBB integrity, resolved tight-junction pathogenesis, diminishes Aß depositions in plaques and effectively restores memory and cognitive performance in a preclinical mouse model of AD. INTERPRETATION: Modulation of neoangiogenesis, in an analogous approach to those used to treat aberrant vascularization in cancer and also in the wet form of age-related macular degeneration (AMD), provides an alternative therapeutic strategy for intervention in AD that warrants clinical investigation. FUNDING: None.
Assuntos
Doença de Alzheimer/patologia , Antineoplásicos/farmacologia , Encéfalo/irrigação sanguínea , Encéfalo/patologia , Neovascularização Patológica , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/etiologia , Animais , Antineoplásicos/uso terapêutico , Axitinibe/farmacologia , Comportamento Animal , Biomarcadores , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças , Monitoramento de Medicamentos , Imunofluorescência , Humanos , Imuno-Histoquímica , Camundongos , Neovascularização Patológica/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Junções Íntimas/metabolismo , Distribuição Tecidual , Resultado do Tratamento , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/metabolismoRESUMO
The blood-brain barrier (BBB) hinders the distribution of therapeutics intended for treatment of diseases of the brain. Our previous studies demonstrated that that a soluble form of melanotransferrin (MTf; Uniprot P08582; also known as p97, MFI2, and CD228), a mammalian iron-transport protein, is an effective carrier for delivery of drug conjugates across the BBB into the brain and was the first BBB targeting delivery system to demonstrate therapeutic efficacy within the brain. Here, we performed a screen to identify peptides from MTf capable of traversing the BBB. We identified a highly conserved 12-amino acid peptide, termed MTfp, that retains the ability to cross the intact BBB intact, distributes throughout the parenchyma, and enter endosomes and lysosomes within neurons, astrocytes and microglia in the brain. This peptide may provide a platform for the transport of therapeutics to the CNS, and thereby offers new avenues for potential treatments of neuropathologies that are currently refractory to existing therapies.
RESUMO
Delivery of biologic drugs across the blood-brain barrier is becoming a reality. However, the solutions often involve the assembly of complex multi-specific antibody molecules. Here we utilize a simple 12 amino-acid peptide originating from the melanotransferrin (MTf) protein that has shown improved brain delivery properties. 3D confocal fluorescence microscopic analysis demonstrated brain parenchymal localisation of a fluorescently labelled antibody (NIP228) when chemically conjugated to either the MTf peptide or full-length MTf protein. Measurement of plasma kinetics demonstrated the MTf peptide fusions had very similar kinetics to an unmodified NIP228 control antibody, whereas the fusion to MTf protein had significantly reduced plasma exposure most likely due to a higher tissue distribution in the periphery. Brain exposure for the MTf peptide fusions was significantly increased for the duration of the study, exceeding that of the fusions to full length MTf protein. Using a neuropathic pain model, we have demonstrated that fusions to interleukin-1 receptor antagonist (IL-1RA) are able to induce significant and durable analgesia following peripheral administration. These data demonstrate that recombinant and chemically conjugated MTf-based brain delivery vectors can deliver therapeutic levels of drug to the central nervous system.
Assuntos
Portadores de Fármacos/metabolismo , Proteína Antagonista do Receptor de Interleucina 1/uso terapêutico , Glicoproteínas de Membrana/metabolismo , Neuralgia/tratamento farmacológico , Peptídeos/metabolismo , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Portadores de Fármacos/química , Humanos , Proteína Antagonista do Receptor de Interleucina 1/administração & dosagem , Proteína Antagonista do Receptor de Interleucina 1/farmacocinética , Masculino , Glicoproteínas de Membrana/química , Camundongos Endogâmicos C57BL , Neuralgia/metabolismo , Peptídeos/químicaRESUMO
Type 2 innate lymphoid cells (ILC2) potentiate immune responses, however, their role in mediating adaptive immunity in cancer has not been assessed. Here, we report that mice genetically lacking ILC2s have significantly increased tumour growth rates and conspicuously higher frequency of circulating tumour cells (CTCs) and resulting metastasis to distal organs. Our data support the model that IL-33 dependent tumour-infiltrating ILC2s are mobilized from the lungs and other tissues through chemoattraction to enter tumours, and subsequently mediate tumour immune-surveillance by cooperating with dendritic cells to promote adaptive cytolytic T cell responses. We conclude that ILC2s play a fundamental, yet hitherto undescribed role in enhancing anti-cancer immunity and controlling tumour metastasis.
Assuntos
Imunidade Inata , Linfócitos/imunologia , Modelos Biológicos , Neoplasias/imunologia , Neoplasias/patologia , Animais , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica/imunologia , Humanos , Interleucina-33/metabolismo , Camundongos , Metástase Neoplásica , Neoplasias/metabolismoRESUMO
Serpulanines A (1), B (2), and C (3) have been isolated from extracts of the rare Sri Lankan macrofungus Serpula sp. The structures of 1, 2, and 3 were elucidated by a combination of spectroscopic and single-crystal X-ray diffraction analyses. Serpulanines A (1) and B (2) both contain the rare (E)-2-hydroxyimino hydroxamic acid functional group array. A proposed biogenesis for serpulanine B (2) suggests that its (E)-2-hydroxyimino hydroxamic acid moiety arises from a diketopiperazine precursor. Synthetic serpulanine A (1) inhibited class I/II histone deacetylases in murine metastatic lung carcinoma cells with an IC50 of 7 µM.
Assuntos
Basidiomycota/química , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/farmacologia , Tirosina/análogos & derivados , Tirosina/farmacologia , Animais , Linhagem Celular Tumoral , Cristalografia por Raios X/métodos , Células HeLa , Inibidores de Histona Desacetilases/isolamento & purificação , Humanos , Ácidos Hidroxâmicos/química , Ácidos Hidroxâmicos/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Camundongos , Oxirredução , Tirosina/química , Tirosina/isolamento & purificaçãoRESUMO
A new paradigm for understanding immune-surveillance and immune escape in cancer is described here. Metastatic carcinomas express reduced levels of IL-33 and diminished levels of antigen processing machinery (APM), compared to syngeneic primary tumours. Complementation of IL-33 expression in metastatic tumours upregulates APM expression and functionality of major histocompatibility complex (MHC)-molecules, resulting in reduced tumour growth rates and a lower frequency of circulating tumour cells. Parallel studies in humans demonstrate that low tumour expression of IL-33 is an immune biomarker associated with recurrent prostate and kidney renal clear cell carcinomas. Thus, IL-33 has a significant role in cancer immune-surveillance against primary tumours, which is lost during the metastatic transition that actuates immune escape in cancer.
Assuntos
Carcinoma de Células Renais/imunologia , Regulação para Baixo , Interleucina-33/genética , Neoplasias Renais/imunologia , Neoplasias da Próstata/imunologia , Animais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/imunologia , Carcinoma de Células Renais/genética , Linhagem Celular Tumoral , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Interleucina-33/metabolismo , Neoplasias Renais/genética , Masculino , Camundongos , Metástase Neoplásica , Neoplasias da Próstata/genética , Evasão TumoralRESUMO
Cross-presentation is now recognized as a major mechanism for initiating CD8 T cell responses to virus and tumor antigens in vivo. It provides an elegant mechanism that allows relatively few Dendritic cells (DCs) to initiate primary immune responses while avoiding the consumptive nature of pathogenic infection. CD8 T cells play a major role in anti-bacterial immune responses; however, the contribution of cross-presentation for priming CD8 T cell responses to bacteria, in vivo, is not well established. Listeria monocytogenes (Listeria) is the causative agent of Listeriosis, an opportunistic food-borne bacterial infection that poses a significant public health risk. Here, we employ a transgenic mouse model in which cross-presentation is uniquely inactivated, to investigate cross-priming during primary Listeria infection. We show that cross-priming deficient mice are severely compromised in their ability to generate antigen-specific T cells to stimulate MHC I-restricted CTL responses following Listeria infection. The defect in generation of Listeria-elicited CD8 T cell responses is also apparent in vitro. However, in this setting, the endogenous route of processing Listeria-derived antigens is predominant. This reveals a new experimental dichotomy whereby functional sampling of Listeria-derived antigens in vivo but not in vitro is dependent on cross-presentation of exogenously derived antigen. Thus, under normal physiological circumstances, cross-presentation is demonstrated to play an essential role in priming CD8 T cell responses to bacteria.
Assuntos
Células Dendríticas/imunologia , Células Dendríticas/microbiologia , Listeria monocytogenes/imunologia , Animais , Apresentação de Antígeno/imunologia , Células da Medula Óssea/citologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/microbiologia , Proliferação de Células , Apresentação Cruzada/imunologia , Sistema Imunitário , Listeriose/imunologia , Listeriose/microbiologia , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos TransgênicosRESUMO
Histone deacetylase inhibitors (HDACi) have been hailed as a powerful new class of anticancer drugs. The HDACi, trichostatin A (TSA), is thought to interfere with epigenetic control of cell cycle progression in G1 and G2-M phase, resulting in growth arrest, differentiation, or apoptosis. Here, we describe a novel mechanism of action of HDACis in promoting immune responses against tumors. We report that treatment of carcinoma cells with TSA increases the expression of many components of the antigen processing machinery, including TAP-1, TAP-2, LMP-2, and Tapasin. Consistent with this result, we found that treatment of metastatic carcinoma cells with TSA also results in an increase in MHC class I expression on the cell surface that functionally translates into an enhanced susceptibility to killing by antigen-specific CTLs. Finally, we observed that TSA treatment suppresses tumor growth and increases tap-1 promoter activity in TAP-deficient tumor cells in vivo. Intriguingly, this in vivo anti-tumoral effect of TSA is entirely mediated by an increase in immunogenicity of the tumor cells, as it does not occur in immunodeficient mice. These novel insights into the molecular mechanisms controlling tumor immune escape may help revise immunotherapeutic modalities for eradicating cancers.
Assuntos
Antígenos de Neoplasias/imunologia , Inibidores Enzimáticos/farmacologia , Inibidores de Histona Desacetilases , Ácidos Hidroxâmicos/farmacologia , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/imunologia , Membro 2 da Subfamília B de Transportadores de Cassetes de Ligação de ATP , Membro 3 da Subfamília B de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/biossíntese , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Apresentação de Antígeno/efeitos dos fármacos , Apresentação de Antígeno/genética , Antígenos de Neoplasias/biossíntese , Linhagem Celular Tumoral , Epigênese Genética/imunologia , Antígenos de Histocompatibilidade Classe I/biossíntese , Antígenos de Histocompatibilidade Classe I/imunologia , Melanoma Experimental/genética , Proteínas de Membrana Transportadoras/biossíntese , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas , RNA Polimerase II/metabolismo , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Linfócitos T Citotóxicos/efeitos dos fármacos , Linfócitos T Citotóxicos/imunologiaRESUMO
The transporter associated with antigen processing (TAP) and the major histocompatibility complex class I (MHC-I), two important components of the MHC-I antigen presentation pathway, are often deficient in tumor cells. The restoration of their expression has been shown to restore the antigenicity and immunogenicity of tumor cells. However, it is unclear whether TAP and MHC-I expression in tumor cells can affect the induction phase of the T cell response. To address this issue, we expressed viral antigens in tumors that are either deficient or proficient in TAP and MHC-I expression. The relative efficiency of direct immunization or immunization through cross-presentation in promoting adaptive T cell responses was compared. The results demonstrated that stimulation of animals with TAP and MHC-I proficient tumor cells generated antigen specific T cells with greater killing activities than those of TAP and MHC-I deficient tumor cells. This discrepancy was traced to differences in the ability of dendritic cells (DCs) to access and sample different antigen reservoirs in TAP and MHC-I proficient versus deficient cells and thereby stimulate adaptive immune responses through the process of cross-presentation. In addition, our data suggest that the increased activity of T cells is caused by the enhanced DC uptake and utilization of MHC-I/peptide complexes from the proficient cells as an additional source of processed antigen. Furthermore, we demonstrate that immune-escape and metastasis are promoted in the absence of this DC 'arming' mechanism. Physiologically, this novel form of DC antigen sampling resembles trogocytosis, and acts to enhance T cell priming and increase the efficacy of adaptive immune responses against tumors and infectious pathogens.
Assuntos
Células Dendríticas/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Infecções/imunologia , Complexo Principal de Histocompatibilidade , Neoplasias/imunologia , Linfócitos T/imunologia , Adaptação Biológica/imunologia , Animais , Células Apresentadoras de Antígenos/imunologia , Apresentação Cruzada/imunologia , Raios gama , Antígenos de Histocompatibilidade Classe I/efeitos da radiação , Humanos , Camundongos , Linfócitos T/efeitos da radiação , Linfócitos T Citotóxicos/imunologiaRESUMO
BACKGROUND: Cross-presentation by dendritic cells (DCs) is a crucial prerequisite for effective priming of cytotoxic T-cell responses against bacterial, viral and tumor antigens; however, this antigen presentation pathway remains poorly defined. METHODOLOGY/PRINCIPAL FINDINGS: In order to develop a comprehensive understanding of this process, we tested the hypothesis that the internalization of MHC class I molecules (MHC-I) from the cell surface is directly involved in cross-presentation pathway and the loading of antigenic peptides. Here we provide the first examination of the internalization of MHC-I in DCs and we demonstrate that the cytoplasmic domain of MHC-I appears to act as an addressin domain to route MHC-I to both endosomal and lysosomal compartments of DCs, where it is demonstrated that loading of peptides derived from exogenously-derived proteins occurs. Furthermore, by chasing MHC-I from the cell surface of normal and transgenic DCs expressing mutant forms of MHC-I, we observe that a tyrosine-based endocytic trafficking motif is required for the constitutive internalization of MHC-I molecules from the cell surface into early endosomes and subsequently deep into lysosomal peptide-loading compartments. Finally, our data support the concept that multiple pathways of peptide loading of cross-presented antigens may exist depending on the chemical nature and size of the antigen requiring processing. CONCLUSIONS/SIGNIFICANCE: We conclude that DCs have 'hijacked' and adapted a common vacuolar/endocytic intracellular trafficking pathway to facilitate MHC I access to the endosomal and lysosomal compartments where antigen processing and loading and antigen cross-presentation takes place.
Assuntos
Apresentação de Antígeno/imunologia , Células Dendríticas/citologia , Endossomos/metabolismo , Genes MHC Classe I , Lisossomos/metabolismo , Motivos de Aminoácidos , Animais , Proliferação de Células , Citoplasma/metabolismo , Células Dendríticas/metabolismo , Endocitose , Camundongos , Camundongos Transgênicos , Estrutura Terciária de Proteína , Linfócitos T Citotóxicos/citologia , Linfócitos T Citotóxicos/imunologia , Vacúolos/metabolismoRESUMO
BACKGROUND: Therapeutic intervention in many neurological diseases is thwarted by the physical obstacle formed by the blood-brain barrier (BBB) that excludes most drugs from entering the brain from the blood. Thus, identifying efficacious modes of drug delivery to the brain remains a "holy grail" in molecular medicine and nanobiotechnology. Brain capillaries, that comprise the BBB, possess an endogenous receptor that ferries an iron-transport protein, termed p97 (melanotransferrin), across the BBB. Here, we explored the hypothesis that therapeutic drugs "piggybacked" as conjugates of p97 can be shuttled across the BBB for treatment of otherwise inoperable brain tumors. APPROACH: Human p97 was covalently linked with the chemotherapeutic agents paclitaxel (PTAX) or adriamycin (ADR) and following intravenous injection, measured their penetration into brain tissue and other organs using radiolabeled and fluorescent derivatives of the drugs. In order to establish efficacy of the conjugates, we used nude mouse models to assess p97-drug conjugate activity towards glioma and mammary tumors growing subcutaneously compared to those growing intracranially. PRINCIPAL FINDINGS: Bolus-injected p97-drug conjugates and unconjugated p97 traversed brain capillary endothelium within a few minutes and accumulated to 1-2% of the injected by 24 hours. Brain delivery with p97-drug conjugates was quantitatively 10 fold higher than with free drug controls. Furthermore, both free-ADR and p97-ADR conjugates equally inhibited the subcutaneous growth of gliomas growing outside the brain. Evocatively, only p97-ADR conjugates significantly prolonged the survival of animals bearing intracranial gliomas or mammary tumors when compared to similar cumulated doses of free-ADR. SIGNIFICANCE: This study provides the initial proof of concept for p97 as a carrier capable of shuttling therapeutic levels of drugs from the blood to the brain for the treatment of neurological disorders, including classes of resident and metastatic brain tumors. It may be prudent, therefore, to consider implementation of this novel delivery platform in various clinical settings for therapeutic intervention in acute and chronic neurological diseases.
Assuntos
Antineoplásicos/administração & dosagem , Barreira Hematoencefálica , Portadores de Fármacos , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Doxorrubicina/administração & dosagem , Doxorrubicina/farmacocinética , Doxorrubicina/uso terapêutico , Corantes Fluorescentes , Humanos , Camundongos , Camundongos Nus , Paclitaxel/administração & dosagem , Paclitaxel/farmacocinética , Paclitaxel/uso terapêuticoRESUMO
PURPOSE: Tpn is a member of the MHC class I loading complex and functions to bridge the TAP peptide transporter to MHC class I molecules. Metastatic human carcinomas often express low levels of the antigen-processing components Tapasin and TAP and display few functional surface MHC class I molecules. As a result, carcinomas are unrecognizable by effector CTLs. The aim of this study is to examine if Tapasin (Tpn) plays a critical role in the escape of tumors from immunologic recognition. EXPERIMENTAL DESIGN: To test our hypothesis, a nonreplicating adenovirus vector encoding human Tpn (AdhTpn) was constructed to restore Tpn expression in vitro and in vivo in a murine lung carcinoma cell line (CMT.64) that is characterized by down-regulation of surface MHC class I due to deficiency in antigen-processing components. RESULTS: Ex vivo, Tpn expression increased surface MHC class I and restored susceptibility of tumor cells to antigen-specific CTL killing, and AdhTpn infection of dendritic cells also significantly increased cross-presentation and cross-priming. Furthermore, tumor-bearing animals inoculated with AdhTpn demonstrated a significant increase in CD8(+) and CD4(+) T cells and CD11c(+) dendritic cells infiltrating the tumors. Provocatively, whereas syngeneic mice bearing tumors that were inoculated with AdhTpn a significant reduction in tumor growth and increased survival compared with vector controls, combining AdhTpn inoculation with AdhTAP1 resulted in a significant augmentation of protection from tumor-induced death than either component alone. CONCLUSIONS: This is the first demonstration that Tpn alone can enhance survival and immunity against tumors but additionally suggests that Tpn and TAP should be used together as components of immunotherapeutic vaccine protocols to eradicate tumors.
Assuntos
Transportadores de Cassetes de Ligação de ATP/imunologia , Apresentação de Antígeno , Neoplasias Pulmonares/terapia , Proteínas de Membrana Transportadoras/imunologia , Membro 2 da Subfamília B de Transportadores de Cassetes de Ligação de ATP , Adenoviridae/genética , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Apresentação Cruzada , Células Dendríticas/imunologia , Intervalo Livre de Doença , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Neoplasias Pulmonares/imunologia , Linfócitos do Interstício Tumoral , Camundongos , Camundongos Endogâmicos C57BL , Baço/citologia , Baço/imunologia , Baço/metabolismo , Taxa de Sobrevida , Linfócitos T CitotóxicosRESUMO
Downregulation of the transporter associated with antigen processing 1 (TAP-1) has been observed in many tumors and is closely associated with tumor immunoevasion mechanisms, growth, and metastatic ability. The molecular mechanisms underlying the relatively low level of transcription of the tap-1 gene in cancer cells are largely unexplained. In this study, we tested the hypothesis that epigenetic regulation plays a fundamental role in controlling tumor antigen processing and immune escape mechanisms. We found that the lack of TAP-1 transcription in TAP-deficient cells correlated with low levels of recruitment of the histone acetyltransferase, CBP, to the TAP-1 promoter. This results in lower levels of histone H3 acetylation at the TAP-1 promoter, leading to a decrease in accessibility of the RNA polymerase II complex to the TAP-1 promoter. These observations suggest that CBP-mediated histone H3 acetylation normally relaxes the chromatin structure around the TAP-1 promoter region, allowing transcription. In addition, we found a hitherto-unknown mechanism wherein interferon gamma up-regulates TAP-1 expression by increasing histone H3 acetylation at the TAP-1 promoter locus. These findings lie at the heart of understanding immune escape mechanisms in tumors and suggest that the reversal of epigenetic codes may provide novel immunotherapeutic paradigms for intervention in cancer.