Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Transl Med ; 16(730): eade2886, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38232136

RESUMO

Immunotherapy has emerged as a crucial strategy to combat cancer by "reprogramming" a patient's own immune system. Although immunotherapy is typically reserved for patients with a high mutational burden, neoantigens produced from posttranscriptional regulation may provide an untapped reservoir of common immunogenic targets for new targeted therapies. To comprehensively define tumor-specific and likely immunogenic neoantigens from patient RNA-Seq, we developed Splicing Neo Antigen Finder (SNAF), an easy-to-use and open-source computational workflow to predict splicing-derived immunogenic MHC-bound peptides (T cell antigen) and unannotated transmembrane proteins with altered extracellular epitopes (B cell antigen). This workflow uses a highly accurate deep learning strategy for immunogenicity prediction (DeepImmuno) in conjunction with new algorithms to rank the tumor specificity of neoantigens (BayesTS) and to predict regulators of mis-splicing (RNA-SPRINT). T cell antigens from SNAF were frequently evidenced as HLA-presented peptides from mass spectrometry (MS) and predict response to immunotherapy in melanoma. Splicing neoantigen burden was attributed to coordinated splicing factor dysregulation. Shared splicing neoantigens were found in up to 90% of patients with melanoma, correlated to overall survival in multiple cancer cohorts, induced T cell reactivity, and were characterized by distinct cells of origin and amino acid preferences. In addition to T cell neoantigens, our B cell focused pipeline (SNAF-B) identified a new class of tumor-specific extracellular neoepitopes, which we termed ExNeoEpitopes. ExNeoEpitope full-length mRNA predictions were tumor specific and were validated using long-read isoform sequencing and in vitro transmembrane localization assays. Therefore, our systematic identification of splicing neoantigens revealed potential shared targets for therapy in heterogeneous cancers.


Assuntos
Melanoma , Neoplasias , Humanos , Antígenos de Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/terapia , Linfócitos T , Peptídeos/química , Imunoterapia/métodos
2.
Cancer Immunol Res ; 9(11): 1327-1341, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34413086

RESUMO

Elevated immunity to cancer-expressed antigens can be detected in people with no history of cancer and may contribute to cancer prevention. We have previously reported that MHC-restricted phosphopeptides are cancer-expressed antigens and targets of immune recognition. However, the extent to which this immunity reflects prior or ongoing phosphopeptide exposures was not investigated. In this study, we found that preexisting immune memory to cancer-expressed phosphopeptides was evident in most healthy donors, but the breadth among donors was highly variable. Although three phosphopeptides were recognized by most donors, suggesting exposures to common microbial/infectious agents, most of the 205 tested phosphopeptides were not recognized by peripheral blood mononuclear cells (PBMC) from any donor and the remainder were recognized by only 1 to 3 donors. In longitudinal analyses of 2 donors, effector immune response profiles suggested active reexposures to a subset of phosphopeptides. These findings suggest that the immunogens generating most phosphopeptide-specific immune memory are rare infectious agents or incipient cancer cells with distinct phosphoproteome dysregulations, and that repetitive immunogenic exposures occur in individual donors. Phosphopeptide-specific immunity in PBMCs and tumor-infiltrating lymphocytes from ovarian cancer patients was limited, regardless of whether the phosphopeptide was expressed on the tumor. However, 4 of 10 patients responded to 1 to 2 immunodominant phosphopeptides, and 1 showed an elevated effector response to a tumor-expressed phosphopeptide. As the tumors from these patients displayed many phosphopeptides, these data are consistent with lack of prior exposure or impaired ability to respond to some phosphopeptides and suggest that enhancing phosphopeptide-specific T-cell responses could be a useful approach to improve tumor immunotherapy.


Assuntos
Carcinoma Epitelial do Ovário/imunologia , Genes MHC Classe I/imunologia , Memória Imunológica/imunologia , Imunoterapia/métodos , Fosfopeptídeos/metabolismo , Estudos de Casos e Controles , Linhagem Celular Tumoral , Feminino , Humanos , Doadores de Tecidos
3.
Mol Cell ; 66(4): 503-516.e5, 2017 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-28525742

RESUMO

ADP-ribosylation of proteins is emerging as an important regulatory mechanism. Depending on the family member, ADP-ribosyltransferases either conjugate a single ADP-ribose to a target or generate ADP-ribose chains. Here we characterize Parp9, a mono-ADP-ribosyltransferase reported to be enzymatically inactive. Parp9 undergoes heterodimerization with Dtx3L, a histone E3 ligase involved in DNA damage repair. We show that the Dtx3L/Parp9 heterodimer mediates NAD+-dependent mono-ADP-ribosylation of ubiquitin, exclusively in the context of ubiquitin processing by E1 and E2 enzymes. Dtx3L/Parp9 ADP-ribosylates the carboxyl group of Ub Gly76. Because Gly76 is normally used for Ub conjugation to substrates, ADP-ribosylation of the Ub carboxyl terminus precludes ubiquitylation. Parp9 ADP-ribosylation activity therefore restrains the E3 function of Dtx3L. Mutation of the NAD+ binding site in Parp9 increases the DNA repair activity of the heterodimer. Moreover, poly(ADP-ribose) binding to the Parp9 macrodomains increases E3 activity. Dtx3L heterodimerization with Parp9 enables NAD+ and poly(ADP-ribose) regulation of E3 activity.


Assuntos
Adenosina Difosfato Ribose/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/enzimologia , Poli(ADP-Ribose) Polimerases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo , Linhagem Celular Tumoral , Reparo do DNA , Células HEK293 , Humanos , Mutação , NAD/metabolismo , Proteínas de Neoplasias/genética , Neoplasias/genética , Neoplasias/patologia , Poli(ADP-Ribose) Polimerases/genética , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Interferência de RNA , Fatores de Tempo , Transfecção , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
4.
J Immunol ; 192(11): 5059-68, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24771855

RESUMO

The leukotriene A4 hydrolase (LTA4H) is a bifunctional enzyme with epoxy hydrolase and aminopeptidase activities. We hypothesize that the LTA4H aminopeptidase activity alleviates neutrophilic inflammation, which contributes to cigarette smoke (CS)-induced emphysema by clearing proline-glycine-proline (PGP), a triamino acid chemokine known to induce chemotaxis of neutrophils. To investigate the biological contributions made by the LTA4H aminopeptidase activity in CS-induced emphysema, we exposed wild-type mice to CS over 5 mo while treating them with a vehicle or a pharmaceutical agent (4MDM) that selectively augments the LTA4H aminopeptidase without affecting the bioproduction of leukotriene B4. Emphysematous phenotypes were assessed by premortem lung physiology with a small animal ventilator and by postmortem histologic morphometry. CS exposure acidified the airspaces and induced localization of the LTA4H protein into the nuclei of the epithelial cells. This resulted in accumulation of PGP in the airspaces by suppressing the LTA4H aminopeptidase activity. When the LTA4H aminopeptidase activity was selectively augmented by 4MDM, the levels of PGP in the bronchoalveolar lavage fluid and infiltration of neutrophils into the lungs were significantly reduced without affecting the levels of leukotriene B4. This protected murine lungs from CS-induced emphysematous alveolar remodeling. In conclusion, CS exposure promotes the development of CS-induced emphysema by suppressing the enzymatic activities of the LTA4H aminopeptidase in lung tissues and accumulating PGP and neutrophils in the airspaces. However, restoring the leukotriene A4 aminopeptidase activity with a pharmaceutical agent protected murine lungs from developing CS-induced emphysema.


Assuntos
Epóxido Hidrolases/imunologia , Leucotrieno A4/imunologia , Pulmão/imunologia , Neutrófilos/imunologia , Enfisema Pulmonar/imunologia , Fumar/efeitos adversos , Animais , Epóxido Hidrolases/antagonistas & inibidores , Epóxido Hidrolases/genética , Leucotrieno A4/genética , Leucotrieno B4/genética , Leucotrieno B4/imunologia , Pulmão/patologia , Camundongos , Camundongos Knockout , Infiltração de Neutrófilos , Neutrófilos/patologia , Enfisema Pulmonar/etiologia , Enfisema Pulmonar/genética , Enfisema Pulmonar/patologia , Fumar/genética , Fumar/imunologia
5.
J Neurosci ; 32(44): 15495-510, 2012 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-23115187

RESUMO

The retrograde transport of Trk-containing endosomes from the axon to the cell body by cytoplasmic dynein is necessary for axonal and neuronal survival. We investigated the recruitment of dynein to signaling endosomes in rat embryonic neurons and PC12 cells. We identified a novel phosphoserine on the dynein intermediate chains (ICs), and we observed a time-dependent neurotrophin-stimulated increase in intermediate chain phosphorylation on this site in both cell types. Pharmacological studies, overexpression of constitutively active MAP kinase kinase, and an in vitro assay with recombinant proteins demonstrated that the intermediate chains are phosphorylated by the MAP kinase ERK1/2, extracellular signal-regulated kinase, a major downstream effector of Trk. Live cell imaging with fluorescently tagged IC mutants demonstrated that the dephosphomimic mutants had significantly reduced colocalization with Trk and Rab7, but not a mitochondrial marker. The phosphorylated intermediate chains were enriched on immunoaffinity-purified Trk-containing organelles. Inhibition of ERK reduced the amount of phospho-IC and the total amount of dynein that copurified with the signaling endosomes. In addition, inhibition of ERK1/2 reduced the motility of Rab7- and TrkB-containing endosomes and the extent of their colocalization with dynein in axons. NGF-dependent survival of sympathetic neurons was significantly reduced by the overexpression of the dephosphomimic mutant IC-1B-S80A, but not WT IC-1B, further demonstrating the functional significance of phosphorylation on this site. These results demonstrate that neurotrophin binding to Trk initiates the recruitment of cytoplasmic dynein to signaling endosomes through ERK1/2 phosphorylation of intermediate chains for their subsequent retrograde transport in axons.


Assuntos
Transporte Axonal/fisiologia , Citoplasma/fisiologia , Dineínas/fisiologia , Endossomos/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Receptor trkA/fisiologia , Animais , Western Blotting , Membrana Celular/metabolismo , Membrana Celular/fisiologia , Sobrevivência Celular/fisiologia , Eletroforese em Gel de Poliacrilamida , Ativação Enzimática , Sistema de Sinalização das MAP Quinases/genética , Fator de Crescimento Neural/fisiologia , Fatores de Crescimento Neural/farmacologia , Neurônios/fisiologia , Organelas/fisiologia , Células PC12 , Fosforilação , Plasmídeos/genética , RNA Interferente Pequeno/genética , Ratos , Transdução de Sinais/fisiologia , Transfecção
6.
PLoS One ; 7(5): e37231, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22623999

RESUMO

BACKGROUND: Tumor cells in vivo encounter diverse types of microenvironments both at the site of the primary tumor and at sites of distant metastases. Understanding how the various mechanical properties of these microenvironments affect the biology of tumor cells during disease progression is critical in identifying molecular targets for cancer therapy. METHODOLOGY/PRINCIPAL FINDINGS: This study uses flexible polyacrylamide gels as substrates for cell growth in conjunction with a novel proteomic approach to identify the properties of rigidity-dependent cancer cell lines that contribute to their differential growth on soft and rigid substrates. Compared to cells growing on more rigid/stiff substrates (>10,000 Pa), cells on soft substrates (150-300 Pa) exhibited a longer cell cycle, due predominantly to an extension of the G1 phase of the cell cycle, and were metabolically less active, showing decreased levels of intracellular ATP and a marked reduction in protein synthesis. Using stable isotope labeling of amino acids in culture (SILAC) and mass spectrometry, we measured the rates of protein synthesis of over 1200 cellular proteins under growth conditions on soft and rigid/stiff substrates. We identified cellular proteins whose syntheses were either preferentially inhibited or preserved on soft matrices. The former category included proteins that regulate cytoskeletal structures (e.g., tubulins) and glycolysis (e.g., phosphofructokinase-1), whereas the latter category included proteins that regulate key metabolic pathways required for survival, e.g., nicotinamide phosphoribosyltransferase, a regulator of the NAD salvage pathway. CONCLUSIONS/SIGNIFICANCE: The cellular properties of rigidity-dependent cancer cells growing on soft matrices are reminiscent of the properties of dormant cancer cells, e.g., slow growth rate and reduced metabolism. We suggest that the use of relatively soft gels as cell culture substrates would allow molecular pathways to be studied under conditions that reflect the different mechanical environments encountered by cancer cells upon metastasis to distant sites.


Assuntos
Microambiente Celular/fisiologia , Matriz Extracelular/química , Neoplasias/metabolismo , Biossíntese de Proteínas/fisiologia , Resinas Acrílicas , Trifosfato de Adenosina/metabolismo , Fenômenos Biomecânicos , Bromodesoxiuridina , Linhagem Celular Tumoral , Ciclina D1/metabolismo , Matriz Extracelular/metabolismo , Humanos , Marcação por Isótopo , Espectrometria de Massas , Neoplasias/fisiopatologia , Proteômica/métodos
7.
J Proteome Res ; 8(2): 967-73, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19105630

RESUMO

The gene transfer agent of Rhodobacter capsulatus (GTA) is a unique phage-like particle that exchanges genetic information between members of this same species of bacterium. Besides being an excellent tool for genetic mapping, the GTA has a number of advantages for biotechnological and nanoengineering purposes. To facilitate the GTA purification and identify the proteins involved in GTA expression, assembly and regulation, in the present work we construct and transform into R. capsulatus Y262 a gene coding for a C-terminally His-tagged capsid protein. The constructed protein was expressed in the cells, assembled into chimeric GTA particles inside the cells and excreted from the cells into surrounding medium. Transmission electron micrographs of phosphotungstate-stained, NiNTA-purified chimeric GTA confirm that its structure is similar to normal GTA particles, with many particles composed both of a head and a tail. The mass spectrometric proteomic analysis of polypeptides present in the GTA recovered outside the cells shows that GTA is composed of at least 9 proteins represented in the GTA gene cluster including proteins coded for by Orf's 3, 5, 6-9, 11, 13, and 15.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Transferência Genética Horizontal , Proteoma/análise , Rhodobacter capsulatus , Sequência de Aminoácidos , Proteínas de Bactérias/isolamento & purificação , Dados de Sequência Molecular , Família Multigênica , Complexos Multiproteicos/química , Complexos Multiproteicos/ultraestrutura , Peptídeos/química , Peptídeos/genética , Peptídeos/isolamento & purificação , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Rhodobacter capsulatus/química , Rhodobacter capsulatus/genética
9.
J Cell Biol ; 174(6): 877-88, 2006 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-16966426

RESUMO

The Ras family of small GTPases regulates cell proliferation, spreading, migration and apoptosis, and malignant transformation by binding to several protein effectors. One such GTPase, R-Ras, plays distinct roles in each of these processes, but to date, identified R-Ras effectors were shared with other Ras family members (e.g., H-Ras). We utilized a new database of Ras-interacting proteins to identify RLIP76 (RalBP1) as a novel R-Ras effector. RLIP76 binds directly to R-Ras in a GTP-dependent manner, but does not physically associate with the closely related paralogues H-Ras and Rap1A. RLIP76 is required for adhesion-induced Rac activation and the resulting cell spreading and migration, as well as for the ability of R-Ras to enhance these functions. RLIP76 regulates Rac activity through the adhesion-induced activation of Arf6 GTPase and activation of Arf6 bypasses the requirement for RLIP76 in Rac activation and cell spreading. Thus, we identify a novel R-Ras effector, RLIP76, which links R-Ras to adhesion-induced Rac activation through a GTPase cascade that mediates cell spreading and migration.


Assuntos
Movimento Celular/fisiologia , GTP Fosfo-Hidrolases/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo , Proteínas ras/metabolismo , Fator 6 de Ribosilação do ADP , Fatores de Ribosilação do ADP/metabolismo , Animais , Adesão Celular/fisiologia , Tamanho Celular , Fibroblastos/metabolismo , Fibroblastos/ultraestrutura , GTP Fosfo-Hidrolases/genética , Proteínas Ativadoras de GTPase/genética , Guanosina Trifosfato/metabolismo , Camundongos , Células NIH 3T3 , Ligação Proteica/fisiologia , Transdução de Sinais/fisiologia , Proteínas rac de Ligação ao GTP/genética , Proteínas ras/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA