Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 10(11): e0142730, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26555239

RESUMO

HCN channels play a unique role in bilaterian physiology as the only hyperpolarization-gated cation channels. Their voltage-gating is regulated by cyclic nucleotides and phosphatidylinositol 4,5-bisphosphate (PIP2). Activation of HCN channels provides the depolarizing current in response to hyperpolarization that is critical for intrinsic rhythmicity in neurons and the sinoatrial node. Additionally, HCN channels regulate dendritic excitability in a wide variety of neurons. Little is known about the early functional evolution of HCN channels, but the presence of HCN sequences in basal metazoan phyla and choanoflagellates, a protozoan sister group to the metazoans, indicate that the gene family predates metazoan emergence. We functionally characterized two HCN channel orthologs from Nematostella vectensis (Cnidaria, Anthozoa) to determine which properties of HCN channels were established prior to the emergence of bilaterians. We find Nematostella HCN channels share all the major functional features of bilaterian HCNs, including reversed voltage-dependence, activation by cAMP and PIP2, and block by extracellular Cs+. Thus bilaterian-like HCN channels were already present in the common parahoxozoan ancestor of bilaterians and cnidarians, at a time when the functional diversity of voltage-gated K+ channels was rapidly expanding. NvHCN1 and NvHCN2 are expressed broadly in planulae and in both the endoderm and ectoderm of juvenile polyps.


Assuntos
Cnidários/metabolismo , Canais Iônicos/metabolismo , Sequência de Aminoácidos , Animais , Clonagem Molecular , Ativação do Canal Iônico , Canais Iônicos/química , Canais Iônicos/genética , Dados de Sequência Molecular , Filogenia , Homologia de Sequência de Aminoácidos
2.
J Exp Biol ; 218(Pt 4): 526-36, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25696816

RESUMO

We examined the evolutionary origins of the ether-à-go-go (EAG) family of voltage-gated K(+) channels, which have a strong influence on the excitability of neurons. The bilaterian EAG family comprises three gene subfamilies (Eag, Erg and Elk) distinguished by sequence conservation and functional properties. Searches of genome sequence indicate that EAG channels are metazoan specific, appearing first in ctenophores. However, phylogenetic analysis including two EAG family channels from the ctenophore Mnemiopsis leidyi indicates that the diversification of the Eag, Erg and Elk gene subfamilies occurred in a cnidarian/bilaterian ancestor after divergence from ctenophores. Erg channel function is highly conserved between cnidarians and mammals. Here we show that Eag and Elk channels from the sea anemone Nematostella vectensis (NvEag and NvElk) also share high functional conservation with mammalian channels. NvEag, like bilaterian Eag channels, has rapid kinetics, whereas NvElk activates at extremely hyperpolarized voltages, which is characteristic of Elk channels. Potent inhibition of voltage activation by extracellular protons is conserved between mammalian and Nematostella EAG channels. However, characteristic inhibition of voltage activation by Mg(2+) in Eag channels and Ca(2+) in Erg channels is reduced in Nematostella because of mutation of a highly conserved aspartate residue in the voltage sensor. This mutation may preserve sub-threshold activation of Nematostella Eag and Erg channels in a high divalent cation environment. mRNA in situ hybridization of EAG channels in Nematostella suggests that they are differentially expressed in distinct cell types. Most notable is the expression of NvEag in cnidocytes, a cnidarian-specific stinging cell thought to be a neuronal subtype.


Assuntos
Cnidários/genética , Evolução Molecular , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Anêmonas-do-Mar/genética , Animais , Sequência de Bases , Cnidários/fisiologia , Hibridização In Situ , Filogenia , Anêmonas-do-Mar/fisiologia , Xenopus
3.
Proc Natl Acad Sci U S A ; 111(15): 5712-7, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24706772

RESUMO

Mammalian Ether-a-go-go related gene (Erg) family voltage-gated K(+) channels possess an unusual gating phenotype that specializes them for a role in delayed repolarization. Mammalian Erg currents rectify during depolarization due to rapid, voltage-dependent inactivation, but rebound during repolarization due to a combination of rapid recovery from inactivation and slow deactivation. This is exemplified by the mammalian Erg1 channel, which is responsible for IKr, a current that repolarizes cardiac action potential plateaus. The Drosophila Erg channel does not inactivate and closes rapidly upon repolarization. The dramatically different properties observed in mammalian and Drosophila Erg homologs bring into question the evolutionary origins of distinct Erg K(+) channel functions. Erg channels are highly conserved in eumetazoans and first evolved in a common ancestor of the placozoans, cnidarians, and bilaterians. To address the ancestral function of Erg channels, we identified and characterized Erg channel paralogs in the sea anemone Nematostella vectensis. N. vectensis Erg1 (NvErg1) is highly conserved with respect to bilaterian homologs and shares the IKr-like gating phenotype with mammalian Erg channels. Thus, the IKr phenotype predates the divergence of cnidarians and bilaterians. NvErg4 and Caenorhabditis elegans Erg (unc-103) share the divergent Drosophila Erg gating phenotype. Phylogenetic and sequence analysis surprisingly indicates that this alternate gating phenotype arose independently in protosomes and cnidarians. Conversion from an ancestral IKr-like gating phenotype to a Drosophila Erg-like phenotype correlates with loss of the cytoplasmic Ether-a-go-go domain. This domain is required for slow deactivation in mammalian Erg1 channels, and thus its loss may partially explain the change in gating phenotype.


Assuntos
Potenciais de Ação/genética , Canais de Potássio Éter-A-Go-Go/metabolismo , Evolução Molecular , Ativação do Canal Iônico/genética , Animais , Sequência de Bases , Teorema de Bayes , Caenorhabditis , Clonagem Molecular , Biologia Computacional , Daphnia , Ativação do Canal Iônico/fisiologia , Modelos Biológicos , Modelos Genéticos , Dados de Sequência Molecular , Técnicas de Patch-Clamp , Placozoa , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Anêmonas-do-Mar , Análise de Sequência de DNA , Especificidade da Espécie , Xenopus
4.
J Gen Physiol ; 141(6): 721-35, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23712551

RESUMO

The Ether-a-go-go (EAG) superfamily of voltage-gated K(+) channels consists of three functionally distinct gene families (Eag, Elk, and Erg) encoding a diverse set of low-threshold K(+) currents that regulate excitability in neurons and muscle. Previous studies indicate that external acidification inhibits activation of three EAG superfamily K(+) channels, Kv10.1 (Eag1), Kv11.1 (Erg1), and Kv12.1 (Elk1). We show here that Kv10.2, Kv12.2, and Kv12.3 are similarly inhibited by external protons, suggesting that high sensitivity to physiological pH changes is a general property of EAG superfamily channels. External acidification depolarizes the conductance-voltage (GV) curves of these channels, reducing low threshold activation. We explored the mechanism of this high pH sensitivity in Kv12.1, Kv10.2, and Kv11.1. We first examined the role of acidic voltage sensor residues that mediate divalent cation block of voltage activation in EAG superfamily channels because protons reduce the sensitivity of Kv12.1 to Zn(2+). Low pH similarly reduces Mg(2+) sensitivity of Kv10.1, and we found that the pH sensitivity of Kv11.1 was greatly attenuated at 1 mM Ca(2+). Individual neutralizations of a pair of EAG-specific acidic residues that have previously been implicated in divalent block of diverse EAG superfamily channels greatly reduced the pH response in Kv12.1, Kv10.2, and Kv11.1. Our results therefore suggest a common mechanism for pH-sensitive voltage activation in EAG superfamily channels. The EAG-specific acidic residues may form the proton-binding site or alternatively are required to hold the voltage sensor in a pH-sensitive conformation. The high pH sensitivity of EAG superfamily channels suggests that they could contribute to pH-sensitive K(+) currents observed in vivo.


Assuntos
Canais de Potássio Éter-A-Go-Go/metabolismo , Prótons , Potenciais de Ação , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Cálcio/farmacologia , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Canais de Potássio Éter-A-Go-Go/química , Concentração de Íons de Hidrogênio , Magnésio/farmacologia , Camundongos , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Xenopus
5.
Science ; 329(5996): 1175-80, 2010 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-20813948

RESUMO

Recent reports of increased tolerance to artemisinin derivatives--the most recently adopted class of antimalarials--have prompted a need for new treatments. The spirotetrahydro-beta-carbolines, or spiroindolones, are potent drugs that kill the blood stages of Plasmodium falciparum and Plasmodium vivax clinical isolates at low nanomolar concentration. Spiroindolones rapidly inhibit protein synthesis in P. falciparum, an effect that is ablated in parasites bearing nonsynonymous mutations in the gene encoding the P-type cation-transporter ATPase4 (PfATP4). The optimized spiroindolone NITD609 shows pharmacokinetic properties compatible with once-daily oral dosing and has single-dose efficacy in a rodent malaria model.


Assuntos
Antimaláricos/farmacologia , Indóis/farmacologia , Malária/tratamento farmacológico , Plasmodium berghei/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Plasmodium vivax/efeitos dos fármacos , Compostos de Espiro/farmacologia , Adenosina Trifosfatases/antagonistas & inibidores , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Animais , Antimaláricos/administração & dosagem , Antimaláricos/química , Antimaláricos/farmacocinética , Linhagem Celular , Descoberta de Drogas , Resistência a Medicamentos , Eritrócitos/parasitologia , Feminino , Genes de Protozoários , Humanos , Indóis/administração & dosagem , Indóis/química , Indóis/farmacocinética , Malária/parasitologia , Masculino , Camundongos , Modelos Moleculares , Proteínas Mutantes/antagonistas & inibidores , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutação , Testes de Sensibilidade Parasitária , Plasmodium falciparum/genética , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium vivax/crescimento & desenvolvimento , Inibidores da Síntese de Proteínas/administração & dosagem , Inibidores da Síntese de Proteínas/química , Inibidores da Síntese de Proteínas/farmacocinética , Inibidores da Síntese de Proteínas/farmacologia , Proteínas de Protozoários/biossíntese , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Ratos , Ratos Wistar , Compostos de Espiro/administração & dosagem , Compostos de Espiro/química , Compostos de Espiro/farmacocinética
6.
Nat Neurosci ; 13(9): 1056-8, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20676103
7.
Biophys J ; 97(1): 110-20, 2009 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-19580749

RESUMO

Voltage-gated K+ channels share a common voltage sensor domain (VSD) consisting of four transmembrane helices, including a highly mobile S4 helix that contains the major gating charges. Activation of ether-a-go-go (EAG) family K+ channels is sensitive to external divalent cations. We show here that divalent cations slow the activation rate of two EAG family channels (Kv12.1 and Kv10.2) by forming a bridge between a residue in the S4 helix and acidic residues in S2. Histidine 328 in the S4 of Kv12.1 favors binding of Zn2+ and Cd2+, whereas the homologous residue Serine 321 in Kv10.2 contributes to effects of Mg2+ and Ni2+. This novel finding provides structural constraints for the position of transmembrane VSD helices in closed, ion-bound EAG family channels. Homology models of Kv12.1 and Kv10.2 VSD structures based on a closed-state model of the Shaker family K+ channel Kv1.2 match these constraints. Our results suggest close conformational conservation between closed EAG and Shaker family channels, despite large differences in voltage sensitivity, activation rates, and activation thresholds.


Assuntos
Cátions Bivalentes/metabolismo , Canais de Potássio Éter-A-Go-Go/química , Canais de Potássio Éter-A-Go-Go/metabolismo , Sequência de Aminoácidos , Animais , Cádmio/metabolismo , Canais de Potássio Éter-A-Go-Go/genética , Canal de Potássio Kv1.2/metabolismo , Magnésio/metabolismo , Potenciais da Membrana/fisiologia , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Níquel/metabolismo , Técnicas de Patch-Clamp , Conformação Proteica , Homologia de Sequência de Aminoácidos , Xenopus , Zinco/metabolismo
8.
PLoS One ; 4(7): e6330, 2009 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-19623261

RESUMO

Voltage-gated potassium channels that activate near the neuronal resting membrane potential are important regulators of excitation in the nervous system, but their functional diversity is still not well understood. For instance, Kv12.2 (ELK2, KCNH3) channels are highly expressed in the cerebral cortex and hippocampus, and although they are most likely to contribute to resting potassium conductance, surprisingly little is known about their function or regulation. Here we demonstrate that the auxiliary MinK (KCNE1) and MiRP2 (KCNE3) proteins are important regulators of Kv12.2 channel function. Reduction of endogenous KCNE1 or KCNE3 expression by siRNA silencing, significantly increased macroscopic Kv12.2 currents in Xenopus oocytes by around 4-fold. Interestingly, an almost 9-fold increase in Kv12.2 currents was observed with the dual injection of KCNE1 and KCNE3 siRNA, suggesting an additive effect. Consistent with these findings, over-expression of KCNE1 and/or KCNE3 suppressed Kv12.2 currents. Membrane surface biotinylation assays showed that surface expression of Kv12.2 was significantly increased by KCNE1 and KCNE3 siRNA, whereas total protein expression of Kv12.2 was not affected. KCNE1 and KCNE3 siRNA shifted the voltages for half-maximal activation to more hyperpolarized voltages, indicating that KCNE1 and KCNE3 may also inhibit activation gating of Kv12.2. Native co-immunoprecipitation assays from mouse brain membranes imply that KCNE1 and KCNE3 interact with Kv12.2 simultaneously in vivo, suggesting the existence of novel KCNE1-KCNE3-Kv12.2 channel tripartite complexes. Together these data indicate that KCNE1 and KCNE3 interact directly with Kv12.2 channels to regulate channel membrane trafficking.


Assuntos
Canais de Potássio Éter-A-Go-Go/metabolismo , Proteínas de Membrana/fisiologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/fisiologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Primers do DNA , Canais de Potássio Éter-A-Go-Go/química , Imunoprecipitação , Técnicas In Vitro , Camundongos , Dados de Sequência Molecular , Técnicas de Patch-Clamp , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , RNA Interferente Pequeno , Homologia de Sequência de Aminoácidos , Xenopus
9.
J Neurosci ; 28(39): 9640-51, 2008 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-18815250

RESUMO

TRPA1 is a member of the transient receptor potential (TRP) family of ion channels and is expressed in a subset of nociceptive neurons. An increasing body of evidence suggests that TRPA1 functions as a chemical nocisensor for a variety of reactive chemicals, such as pungent natural compounds and environmental irritants. Activation of TRPA1 by reactive compounds has been demonstrated to be mediated through covalent modification of cytoplasmic cysteines located in the N terminus of the channel, rather than classical lock-and-key binding. TRPA1 activity is also modulated by numerous nonreactive chemicals, but the underlying mechanism is unknown. Menthol, a natural nonreactive cooling compound, is best known as an activator of TRPM8, a related TRP ion channel required for cool thermosensation in vivo. More recently, menthol has been shown to be an activator of mouse TRPA1 at low concentrations, and a blocker, at high concentrations. Here, we show that human TRPA1 is only activated by menthol, whereas TRPA1 from nonmammalian species are insensitive to menthol. Mouse-human TRPA1 chimeras reveal the pore region [including transmembrane domain 5 (TM5) and TM6] as the critical domain determining whether menthol can act as an inhibitor. Furthermore, chimeras between Drosophila melanogaster and mammalian TRPA1 highlight specific residues within TM5 critical for menthol responsiveness. Interestingly, this TM5 region also determines the sensitivity of TRPA1 to other chemical modulators. These data suggest separable structural requirements for modulation of TRPA1 by covalent and nonreactive molecules. Whether this region is involved in binding or gating of TRPA1 channels is discussed.


Assuntos
Antipruriginosos/farmacologia , Proteínas de Choque Térmico HSP90/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Mentol/farmacologia , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Benzamidas/farmacologia , Linhagem Celular Transformada , Clonagem Molecular/métodos , Relação Dose-Resposta a Droga , Relação Dose-Resposta à Radiação , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Estimulação Elétrica/métodos , Proteínas de Choque Térmico HSP90/agonistas , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Proteínas de Choque Térmico HSP90/genética , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Potenciais da Membrana/fisiologia , Mutagênese/fisiologia , Técnicas de Patch-Clamp/métodos , Estrutura Terciária de Proteína/fisiologia , Timol/farmacologia , Transfecção/métodos
10.
Am J Physiol Cell Physiol ; 285(6): C1356-66, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12890647

RESUMO

The Elk subfamily of the Eag K+ channel gene family is represented in mammals by three genes that are highly conserved between humans and rodents. Here we report the distribution and functional properties of a member of the human Elk K+ channel gene family, KCNH8. Quantitative RT-PCR analysis of mRNA expression patterns showed that KCNH8, along with the other Elk family genes, KCNH3 and KCNH4, are primarily expressed in the human nervous system. KCNH8 was expressed at high levels, and the distribution showed substantial overlap with KCNH3. In Xenopus oocytes, KCNH8 gives rise to slowly activating, voltage-dependent K+ currents that open at hyperpolarized potentials (half-maximal activation at -62 mV). Coexpression of KCNH8 with dominant-negative KCNH8, KCNH3, and KCNH4 subunits led to suppression of the KCNH8 currents, suggesting that Elk channels can form heteromultimers. Similar experiments imply that KCNH8 subunits are not able to form heteromultimers with Eag, Erg, or Kv family K+ channels.


Assuntos
Encéfalo/fisiologia , Filogenia , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Canais de Potássio/fisiologia , Sequência de Aminoácidos , Animais , Canais de Potássio Éter-A-Go-Go , Humanos , Potenciais da Membrana/fisiologia , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/fisiologia , Técnicas de Patch-Clamp , RNA Mensageiro/análise , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA