Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Heliyon ; 10(4): e25417, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38420388

RESUMO

Carbon dots (CDs) are promising photothermal nanoparticles that can be utilized in environmental treatments. They exhibit favorable physicochemical properties, including low toxicity, physical and chemical stability, photo-dependant reversible behaviour, and environmentally friendly synthesis using benign building blocks. Here, we synthesized innovative CDs/polylactic acid (PLA) electrospun composite membranes for evaluating the removal of hydrophobic compounds like long-chain hydrocarbons or oils in biphasic mixtures with water. The ultimate goal was to develop innovative and sustainable solar-heated oil absorbents. Specifically, we fabricated PLA membranes with varying CD contents, characterized their morphology, thermal, and mechanical properties, and assessed the environmental impact of membrane production according to ISO 14040 and 14044 standards in a preliminary "cradle-to-gate" life cycle assessment study. Solar radiation experiments demonstrated that the CDs/PLA composites exhibited greater uptake of hydrophobic compounds compared to pure PLA membranes, ascribable to the CDs-induced photothermal effect. The adsorption and regeneration capacity of the new CDs/PLA membrane was demonstrated through multiple uptake/release cycles. Ecotoxicity analyses confirmed the safety profile of the new adsorbent system towards freshwater microalgae, further emphasizing its potential as an environmentally friendly solution for the removal of hydrophobic compounds in water treatment processes.

2.
Chem Commun (Camb) ; 59(82): 12298-12301, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37752864

RESUMO

Here, we utilized designed condensates formed by liquid-liquid phase separation (LLPS) of cationic and aromatic peptide to sequester tyrosine-based carbon dots (C-dots). The C-dots fluorescence is quenched and retrieved upon partitioning and release from condensates, allowing a spatial regulation of C-dots fluorescence which can be utilized for biosensing applications.


Assuntos
Carbono , Peptídeos , Carbono/química , Tirosina
3.
Nanomaterials (Basel) ; 13(14)2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37513114

RESUMO

Carbon quantum dots (CQDs) are known for their biocompatibility and versatile applications in the biomedical sector. These CQDs retain high solubility, robust chemical inertness, facile modification, and good resistance to photobleaching, which makes them ideal for cell bioimaging. Many fabrication processes produce CQDs, but most require expensive equipment, toxic chemicals, and a long processing time. This study developed a facile and rapid toasting method to prepare CQDs using various slices of bread as precursors without any additional chemicals. This fast and cost-effective toasting method could produce CQDs within 2 h, compared with the 10 h process in the commonly used hydrothermal method. The CQDs derived from the toasting method could be used to bioimage two types of colon cancer cells, namely, CT-26 and HT-29, derived from mice and humans, respectively. Significantly, these CQDs from the rapid toasting method produced equally bright images as CQDs derived from the hydrothermal method.

4.
Bioconjug Chem ; 33(9): 1663-1671, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-36065131

RESUMO

Resveratrol, a natural polyphenol, exhibits beneficial health properties and has been touted as a potential anti-tumor agent. Here, we demonstrate potent anti-cancer effects of carbon dots (C-dots) synthesized from resveratrol. The mild synthesis conditions retained resveratrol functional moieties upon the carbon dots' (C-dots) surface, an important requisite for achieving specificity toward cancer cells and biological activities. Indeed, the disruptive effects of the resveratrol-C-dot were more pronounced in several cancer cell types compared to normal cells, underscoring targeting capabilities of the C-dots, a pertinent issue for the development of cancer therapeutics. In particular, we observed impairment of mitochondrial functionalities, including intracellular calcium release, inhibition of cytochrome-C oxidase enzyme activity, and mitochondrial membrane perturbation. Furthermore, the resveratrol C-dots were more potent than either resveratrol molecules alone, known anti-cancer polyphenolic agents such as curcumin and triphenylphosphonium, or C-dots prepared from different carbonaceous precursors. This study suggests that resveratrol-synthesized C-dots may have promising therapeutic potential as anti-cancer agents.


Assuntos
Antineoplásicos , Curcumina , Neoplasias , Estilbenos , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Apoptose , Cálcio/metabolismo , Carbono/metabolismo , Curcumina/farmacologia , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/farmacologia , Mitocôndrias/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Polifenóis/metabolismo , Polifenóis/farmacologia , Resveratrol/farmacologia , Estilbenos/farmacologia
5.
ACS Nano ; 16(8): 12889-12899, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35866668

RESUMO

Glucagon is a prominent peptide hormone, playing central roles in the regulation of glucose blood-level and lipid metabolism. Formation of glucagon amyloid fibrils has been previously reported, although no biological functions of such fibrils are known. Here, we demonstrate that glucagon amyloid fibrils catalyze biologically important reactions, including esterolysis, lipid hydrolysis, and dephosphorylation. In particular, we found that glucagon fibrils catalyze dephosphorylation of adenosine triphosphate (ATP), a core metabolic reaction in cell biology. Comparative analysis of several glucagon variants allowed mapping the catalytic activity to an enzymatic pocket-like triad formed at the glucagon fibril surface, comprising the histidyl-serine domain at the N-terminus of the peptide. This study may point to previously unknown physiological roles and pathological consequences of glucagon fibrillation and supports the hypothesis that catalytic activities of native amyloid fibrils play functional roles in human physiology and disease.


Assuntos
Amiloide , Glucagon , Humanos , Glucagon/química , Glucagon/metabolismo , Amiloide/química , Ligação Proteica
6.
Colloids Surf B Biointerfaces ; 212: 112374, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35121429

RESUMO

Amyloidoses are a family of diseases characterized by abnormal protein folding that leads to fibril aggregates, amyloids. Extensive research efforts are devoted to developing inhibitors to amyloid aggregates. Here we set to explore functionalized titania (TiO2) nanoparticles (NPs) as potential amyloid inhibiting agents. TiO2 NPs were coated by a catechol derivative, dihydroxy-phenylalanine propanoic acid (DPA), and further conjugated to the amyloids' specific dye Congo-Red (CR). TiO2-DPA-CR NPs were found to target mature fibrils of ß-amyloid (Aß). Moreover, coated NPs incubated with Aß proteins suppressed amyloid fibrillation. TiO2-DPA-CR were found to target amyloids in solution and induce their sedimentation upon centrifugation. This work demonstrates the potential utilization of TiO2-DPA NPs for labeling and facilely separating from solution mature amyloid fibrils.


Assuntos
Amiloidose , Nanopartículas , Humanos , Adsorção , Amiloide , Peptídeos beta-Amiloides/metabolismo , Titânio
7.
Nat Commun ; 12(1): 5937, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34642345

RESUMO

Development of sustainable processes for hydrocarbons synthesis is a fundamental challenge in chemistry since these are of unquestionable importance for the production of many essential synthetic chemicals, materials and carbon-based fuels. Current industrial processes rely on non-abundant metal catalysts, temperatures of hundreds of Celsius and pressures of tens of bars. We propose an alternative gas phase process under mild reaction conditions using only atomic carbon, molecular hydrogen and an inert carrier gas. We demonstrate that the presence of CH2 and H radicals leads to efficient C-C chain growth, producing micron-length fibres of unbranched alkanes with an average length distribution between C23-C33. Ab-initio calculations uncover a thermodynamically favourable methylene coupling process on the surface of carbonaceous nanoparticles, which is kinematically facilitated by a trap-and-release mechanism of the reactants and nanoparticles that is confirmed by a steady incompressible flow simulation. This work could lead to future alternative sustainable synthetic routes to critical alkane-based chemicals or fuels.

8.
Biochim Biophys Acta Biomembr ; 1863(1): 183471, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32931774

RESUMO

Mitochondria have emerged as important determinants in cancer progression and malignancy. However, the role of mitochondrial membranes in cancer onset and progression has not been thoroughly investigated. This study compares the structural and functional properties of mitochondrial membranes in prostate and colon cancer cells in comparison to normal mitochondria, and possible therapeutic implications of these membrane changes. Specifically, isolation of cell mitochondria and preparation of inverted sub-mitochondrial particles (SMPs) illuminated significant cancer-induced modulations of membrane lipid compositions, fluidity, and activity of cytochrome c oxidase, one of the key mitochondrial enzymes. The experimental data further show that cancer-associated membrane transformations may account for mitochondria targeting by betulinic acid and resveratrol, known anti-cancer molecules. Overall, this study probes the relationship between cancer and mitochondrial membrane transformations, underlying a potential therapeutic significance for mitochondrial membrane targeting in cancer.


Assuntos
Neoplasias do Colo , Lipídeos de Membrana/metabolismo , Mitocôndrias , Membranas Mitocondriais , Proteínas Mitocondriais/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias da Próstata , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Células HCT116 , Humanos , Masculino , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Membranas Mitocondriais/metabolismo , Membranas Mitocondriais/patologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia
9.
Cell Mol Life Sci ; 78(5): 2145-2155, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32844279

RESUMO

BIM is a key apoptotic protein, participating in diverse cellular processes. Interestingly, recent studies have hypothesized that BIM is associated with the extensive neuronal cell death encountered in protein misfolding diseases, such as Alzheimer's disease. Here, we report that the core pro-apoptotic domain of BIM, the BIM-BH3 motif, forms ubiquitous amyloid fibrils. The BIM-BH3 fibrils exhibit cytotoxicity, disrupt mitochondrial functions, and modulate the structures and dynamics of mitochondrial membrane mimics. Interestingly, a slightly longer peptide in which BIM-BH3 was flanked by four additional residues, widely employed as a model of the pro-apoptotic core domain of BIM, did not form fibrils, nor exhibited cell disruptive properties. The experimental data suggest a new mechanistic role for the BIM-BH3 domain, and demonstrate, for the first time, that an apoptotic peptide forms toxic amyloid fibrils.


Assuntos
Amiloide/química , Apoptose , Proteína 11 Semelhante a Bcl-2/química , Domínios Proteicos , Sequência de Aminoácidos , Amiloide/metabolismo , Amiloide/ultraestrutura , Proteína 11 Semelhante a Bcl-2/genética , Proteína 11 Semelhante a Bcl-2/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular , Dicroísmo Circular , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Humanos , Microscopia Eletrônica , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Proteínas Mitocondriais/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Homologia de Sequência de Aminoácidos
10.
J Colloid Interface Sci ; 573: 87-95, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32272300

RESUMO

Thioflavin T (ThT), a benzothiazole-based fluorophore, is a prominent dye widely employed for monitoring amyloid fibril assembly. Despite the near-universal presumption that ThT binds to ß-sheet domains upon fibrillar surface via hydrophobic forces, the contribution of the positive charge of ThT to fibril binding and concomitant fluorescence enhancement have not been thoroughly assessed. Here we demonstrate a considerable interdependence between ThT fluorescence and electrostatic charges of peptide fibrils. Specifically, by analyzing both fibril-forming synthetic peptides and prominent natural fibrillar peptides, we demonstrate pronounced modulations of ThT fluorescence signal that were solely dependent upon electrostatic interactions between ThT and peptide surface. The results further attest to the fact that fibril ζ-potential rather than pH-dependent assembly of the fibrils constitute the primary factor affecting ThT binding and fluorescence. This study provides the first quantitative assessment of electrostatically driven ThT fluorescence upon adsorption to amyloid fibrils.


Assuntos
Benzotiazóis/química , Corantes Fluorescentes/química , Peptídeos/química , Fluorescência , Interações Hidrofóbicas e Hidrofílicas , Tamanho da Partícula , Eletricidade Estática , Propriedades de Superfície
11.
Biophys J ; 118(6): 1270-1278, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32053776

RESUMO

Membrane interactions of amyloidogenic proteins constitute central determinants both in protein aggregation as well as in amyloid cytotoxicity. Most reported studies of amyloid peptide-membrane interactions have employed model membrane systems combined with application of spectroscopy methods or microscopy analysis of individual binding events. Here, we applied for the first time, to our knowledge, imaging flow cytometry for investigating interactions of representative amyloidogenic peptides, namely, the 106-126 fragment of prion protein (PrP(106-126)) and the human islet amyloid polypeptide (hIAPP), with giant lipid vesicles. Imaging flow cytometry was also applied to examine the inhibition of PrP(106-126)-membrane interactions by epigallocatechin gallate, a known modulator of amyloid peptide aggregation. We show that imaging flow cytometry provided comprehensive population-based statistical information upon morphology changes of the vesicles induced by PrP(106-126) and hIAPP. Specifically, the experiments reveal that both PrP(106-126) and hIAPP induced dramatic transformations of the vesicles, specifically disruption of the spherical shapes, reduction of vesicle circularity, lobe formation, and modulation of vesicle compactness. Interesting differences, however, were apparent between the impact of the two peptides upon the model membranes. The morphology analysis also showed that epigallocatechin gallate ameliorated vesicle disruption by PrP(106-126). Overall, this study demonstrates that imaging flow cytometry provides powerful means for disclosing population-based morphological membrane transformations induced by amyloidogenic peptides and their inhibition by aggregation modulators.


Assuntos
Polipeptídeo Amiloide das Ilhotas Pancreáticas , Príons , Amiloide , Proteínas Amiloidogênicas , Citometria de Fluxo , Humanos
12.
Nanoscale Adv ; 2(12): 5866-5873, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36133854

RESUMO

Misfolding and aggregation of the human islet amyloid polypeptide (hIAPP) are believed to play key roles in the pathophysiology of type-II diabetes. Here, we demonstrate that carbon dots (C-dots) prepared from the amino acid tyrosine inhibit fibrillation of hIAPP, reduce hIAPP-induced cell toxicity and block membrane disruption by the peptide. The pronounced inhibitory effect is traced to the display of ubiquitous aromatic residues upon the C-dots' surface, mimicking the anti-fibril and anti-toxic activity of natural polyphenolic compounds. Notably, spectroscopy and thermodynamics analysis demonstrated different hIAPP interactions and fibril inhibition effects induced by tyrosine-C-dots displaying phenolic residues and C-dots prepared from phenylalanine which exhibited phenyl units on their surface, underscoring the significance of hydrogen bonding mediated by the phenolic hydroxide moieties for the fibril modulation activity. The presented experiments attest to the potential of tyrosine-C-dots as a therapeutic vehicle for protein misfolding diseases, interfering in both π-π interactions as well as hydrogen bonding involving aromatic residues of amyloidogenic peptides.

13.
Chem Commun (Camb) ; 55(59): 8595-8598, 2019 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-31276123

RESUMO

The amino acid sequence plays an essential role in amyloid formation. Here, using the central core recognition module of the Aß peptide and its reverse sequence, we show that although both peptides assemble into ß-sheets, their morphologies, kinetics and cell toxicities display marked differences. In addition, the native peptide, but not the reverse one, shows notable affinity towards bilayer lipid model membranes that modulates the aggregation pathways to stabilize the oligomeric intermediate states and function as the toxic agent responsible for neuronal dysfunction.


Assuntos
Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Sequência de Aminoácidos , Peptídeos beta-Amiloides/toxicidade , Animais , Linhagem Celular Tumoral , Colesterol/química , Humanos , Cinética , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Fragmentos de Peptídeos/toxicidade , Fosfatidilcolinas/química , Conformação Proteica em Folha beta , Multimerização Proteica , Ratos , Esfingomielinas/química
14.
Anal Chem ; 91(11): 7295-7303, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31062958

RESUMO

Rational engineering of highly stable and Raman-active nanostructured substrates is still urgently in demand for achieving sensitive and reliable surface-enhanced Raman spectroscopy (SERS) analysis in solution phase. Herein, monodisperse N-doping graphene quantum dots wrapped Au nanoparticles (Au-NGQD NPs) were facilely prepared, and further their applications as substrates in SERS-based detection and cellular imaging have been explored. The as-prepared Au-NGQD NPs exhibit superior long-term stability and biocompatibility, as well as large enhancement capability due to the integration of electromagnetic and chemical enhancements. The practical applicability of the Au-NGQD NPs was verified via the direct SERS tests of several kinds of aromatics in solution phase. Finite-difference time-domain simulations in combination with density functional theory calculation were also successfully used to explain the enhancement mechanism. Furthermore, the Au-NGQD NPs were conjugated with 4-nitrobenzenethiol (4-NBT, as reporter) and 4-mercaptophenylboronic acid (MPBA, as targeting element) to construct the MPBA/4-NBT@Au-NGQD probes, which could specifically recognize glycan-overexpressed cancer cells through SERS imaging on a cell surface. The prepared Au-NGQDs show great potential as superior SERS substrates in solution phase for on-site Raman detection.

15.
ACS Chem Neurosci ; 10(8): 3555-3564, 2019 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-31141342

RESUMO

Extensive neuronal cell death is among the pathological hallmarks of Alzheimer's disease. While neuron death is coincident with formation of plaques comprising the beta-amyloid (Aß) peptide, a direct causative link between Aß (or other Alzheimer's-associated proteins) and cell toxicity is yet to be found. Here we show that BIM-BH3, the primary proapoptotic domain of BIM, a key protein in varied apoptotic cascades of which elevated levels have been found in brain cells of patients afflicted with Alzheimer's disease, interacts with the 42-residue amyloid isoform Aß42. Remarkably, BIM-BH3 modulated the structure, fibrillation pathway, aggregate morphology, and membrane interactions of Aß42. In particular, BIM-BH3 inhibited Aß42 fibril-formation, while it simultaneously enhanced protofibril assembly. Furthermore, we discovered that BIM-BH3/Aß42 interactions induced cell death in a human neuroblastoma cell model. Overall, our data provide a crucial mechanistic link accounting for neuronal cell death in Alzheimer's disease patients and the participation of both BIM and Aß42 in the neurotoxicity process.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Proteína 11 Semelhante a Bcl-2/metabolismo , Morte Celular/fisiologia , Neurônios/metabolismo , Doença de Alzheimer/patologia , Apoptose/fisiologia , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Humanos , Neurônios/patologia , Ligação Proteica , Conformação Proteica
16.
ACS Appl Mater Interfaces ; 11(4): 4470-4479, 2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30608135

RESUMO

Polydiacetylenes are a class of conjugated polymers exhibiting unique color and fluorescence properties and employed as useful sensing vehicles. Here we demonstrate for the first time that the dielectric properties of polydiacetylenes can be exploited for vapor sensing. Specifically, electrodes coated with polydiacetylenes, embedded within a porous polyvinylpyrrolidone (PVP) matrix, exhibit significant capacitance transformations upon exposure to different vapors. The capacitive response of the polydiacetylene/PVP films depended upon both the structures of the diacetylene monomer and the extent of ultraviolet irradiation (i.e., polymerization), underscoring a unique sensing mechanism affected by conjugation, structure, and dielectric properties of the polydiacetylene/polymer matrix. Importantly, the variability of polydiacetylene structures allows vapor identification through an array-based pattern recognition (i.e., artificial nose). This study opens new avenues for applications of polydiacetylene systems, particularly pointing to their dielectric properties as powerful sensing determinants.


Assuntos
Nariz Eletrônico , Polímero Poliacetilênico/química , Polímeros/química , Povidona/química
17.
ACS Nano ; 13(2): 1703-1712, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30673213

RESUMO

Metabolite materials are extremely useful to obtain functional bioinspired assemblies with unique physical properties for various applications in the fields of material science, engineering, and medicine by self-assembly of the simplest biological building blocks. Supramolecular co-assembly has recently emerged as a promising extended approach to further expand the conformational space of metabolite assemblies in terms of structural and functional complexity. Yet, the design of synergistically co-assembled amino acids to produce tailor-made functional architectures is still challenging. Herein, we propose a design rule to predict the supramolecular co-assembly of naturally occurring amino acids based on their interlayer separation distances observed in single crystals. Using diverse experimental techniques, we demonstrate that amino acids with comparable interlayer separation strongly interact and co-assemble to produce structural composites distinctly different from their individual properties. However, such an interaction is hampered in a mixture of differentially layer-separated amino acids, which self-sort to generate individual characteristic structures. This study provides a different paradigm for the modular design of supramolecular assemblies based on amino acids with predictable properties.


Assuntos
Aminoácidos/química , Nanoestruturas/química , Peptídeos/química , Espectrometria de Massas , Microscopia Eletrônica de Varredura , Simulação de Dinâmica Molecular
18.
Methods Mol Biol ; 1873: 39-51, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30341602
19.
Molecules ; 23(12)2018 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-30544943

RESUMO

PAP248⁻286, a 39 amino acid peptide fragment, derived from the prostatic acid phosphatase secreted in human semen, forms amyloid fibrils and facilitates the attachment of retroviruses to host cells that results in the enhancement of viral infection. Therefore, the inhibition of amyloid formation by PAP248⁻286 (termed PAP f39) may likely reduce HIV transmission in AIDS. In this study, we show that the naphthoquinone tryptophan (NQTrp) hybrid molecule significantly inhibited PAP f39 aggregation in vitro in a dose-dependent manner as observed from the ThT assay, ANS assay, and transmission electron microscopy imaging. We found that even at a sub-molar concentration of 20:1 [PAP f39:NQTrp], NQTrp could reduce >50% amyloid formation. NQTrp inhibition of PAP f39 aggregation resulted in non-toxic intermediate species as determined by the vesicle leakage assay. Isothermal titration calorimetry and molecular docking revealed that the binding of NQTrp and PAP f39 is spontaneous, and NQTrp predominantly interacts with the polar and charged residues of the peptide by forming hydrogen bonds and hydrophobic contacts with a strong binding energy. Collectively, these findings indicate that NQTrp holds significant potential as a small molecule inhibitor of semen amyloids.


Assuntos
Fosfatase Ácida/metabolismo , Amiloide/metabolismo , Naftoquinonas/química , Naftoquinonas/farmacologia , Fosfatase Ácida/química , Amiloide/antagonistas & inibidores , Sítios de Ligação , Corantes/química , Vermelho Congo/química , Relação Dose-Resposta a Droga , Simulação de Acoplamento Molecular , Naftoquinonas/administração & dosagem , Fragmentos de Peptídeos/metabolismo , Conformação Proteica , Termodinâmica , Triptofano/química
20.
Chem Commun (Camb) ; 54(56): 7762-7765, 2018 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-29947369

RESUMO

Enantiomeric carbon dots (C-dots) synthesized from l-lysine or d-lysine, modulate aggregation and cytotoxicity of amyloid beta-42 (Aß42), the primary constituent of the amyloid plaques associated with Alzheimer's disease. In particular, l-Lys-C-dots dramatically remodeled Aß42 secondary structure and fibril morphologies, as well as inhibited Aß42 cytotoxicity and membrane interactions.


Assuntos
Peptídeos beta-Amiloides/química , Carbono/química , Fragmentos de Peptídeos/química , Pontos Quânticos/química , Peptídeos beta-Amiloides/toxicidade , Linhagem Celular Tumoral , Humanos , Bicamadas Lipídicas/química , Lisina/química , Tamanho da Partícula , Fragmentos de Peptídeos/toxicidade , Agregados Proteicos , Conformação Proteica em Folha beta , Multimerização Proteica , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA