Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
PLoS One ; 17(4): e0266889, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35482763

RESUMO

Next generation sequencing (NGS) assays with large targeted gene panels can comprehensively profile cancer somatic mutations in a tumor sample. Given the rapid adoption of such assays for circulating tumor DNA (ctDNA) analysis in clinical oncology, it is essential for the community to understand their analytical performance in liquid biopsy settings. Here, we directly compared five ctDNA NGS assays, most of which having a panel of 400 or more genes, with simulated samples harboring mutations relevant to solid tumors or myeloid malignancy. Our results indicate that the detection sensitivity and reproducibility of all five assays was 90% or higher when the mutations were at 0.5% or 1.0% allele frequency, and with optimal DNA input of 30 ng or 50 ng per vendor's protocol. The performances decreased and varied dramatically, when mutations were at a 0.1% allele frequency and/or when a lower genomic input of 10 ng DNA was used. Interestingly, one of the assays repeatedly showed higher rate of false positivity than the others across two different sample sets. Multiple intrinsic technical factors pertaining to the NGS assays were further investigated. Notable differences among the assays were seen for depth of coverage and background noise, which profoundly impacted assay performance. The results derived from this study are highly informative and provide a framework to assess and select suitable assays for specific application in cancer monitoring and potential clinical use.


Assuntos
DNA Tumoral Circulante , Neoplasias , DNA Tumoral Circulante/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Biópsia Líquida , Neoplasias/genética , Reprodutibilidade dos Testes
2.
Front Genet ; 12: 714071, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34539742

RESUMO

BACKGROUND: Thyroid cancer (TC) is the most common endocrine malignancy, and the incidence is increasing very fast. Surgical resection and radioactive iodine ablation are major therapeutic methods, however, around 10% of differentiated thyroid cancer and all anaplastic thyroid carcinoma (ATC) are failed. Comprehensive understanding the molecular mechanisms may provide new therapeutic strategies for thyroid cancer. Even though genetic heterogeneity is rigorously studied in various cancers, epigenetic heterogeneity in human cancer remains unclear. METHODS: A total of 405 surgical resected thyroid cancer samples were employed (three spatially isolated specimens were obtained from different regions of the same tumor). Twenty-four genes were selected for methylation screening, and frequently methylated genes in thyroid cancer were used for further validation. Methylation specific PCR (MSP) approach was employed to detect the gene promoter region methylation. RESULTS: Five genes (AP2, CDH1, DACT2, HIN1, and RASSF1A) are found frequently methylated (>30%) in thyroid cancer. The five genes panel is used for further epigenetic heterogeneity analysis. AP2 methylation is associated with gender (P < 0.05), DACT2 methylation is associated with age, gender and tumor size (all P < 0.05), HIN1 methylation is associated to tumor size (P < 0.05) and extra-thyroidal extension (P < 0.01). RASSF1A methylation is associated with lymph node metastasis (P < 0.01). For heterogeneity analysis, AP2 methylation heterogeneity is associated with tumor size (P < 0.01), CDH1 methylation heterogeneity is associated with lymph node metastasis (P < 0.05), DACT2 methylation heterogeneity is associated with tumor size (P < 0.01), HIN1 methylation heterogeneity is associated with tumor size and extra-thyroidal extension (all P < 0.01). The multivariable analysis suggested that the risk of lymph node metastasis is 2.5 times in CDH1 heterogeneous methylation group (OR = 2.512, 95% CI 1.135, 5.557, P = 0.023). The risk of extra-thyroidal extension is almost 3 times in HIN1 heterogeneous methylation group (OR = 2.607, 95% CI 1.138, 5.971, P = 0.023). CONCLUSION: Five of twenty-four genes were found frequently methylated in human thyroid cancer. Based on 5 genes panel analysis, epigenetic heterogeneity is an universal event. Epigenetic heterogeneity is associated with cancer development and progression.

3.
PLoS One ; 16(5): e0250518, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34033669

RESUMO

Gestational trophoblastic disease (GTD) is a heterogeneous group of lesions arising from placental tissue. Epithelioid trophoblastic tumor (ETT), derived from chorionic-type trophoblast, is the rarest form of GTD with only approximately 130 cases described in the literature. Due to its morphologic mimicry of epithelioid smooth muscle tumors and carcinoma, ETT can be misdiagnosed. To date, molecular characterization of ETTs is lacking. Furthermore, ETT is difficult to treat when disease spreads beyond the uterus. Here using RNA-Seq analysis in a cohort of ETTs and other gestational trophoblastic lesions we describe the discovery of LPCAT1-TERT fusion transcripts that occur in ETTs and coincide with underlying genomic deletions. Through cell-growth assays we demonstrate that LPCAT1-TERT fusion proteins can positively modulate cell proliferation and therefore may represent future treatment targets. Furthermore, we demonstrate that TERT upregulation appears to be a characteristic of ETTs, even in the absence of LPCAT1-TERT fusions, and that it appears linked to copy number gains of chromosome 5. No evidence of TERT upregulation was identified in other trophoblastic lesions tested, including placental site trophoblastic tumors and placental site nodules, which are thought to be the benign chorionic-type trophoblast counterpart to ETT. These findings indicate that LPCAT1-TERT fusions and copy-number driven TERT activation may represent novel markers for ETT, with the potential to improve the diagnosis, treatment, and outcome for women with this rare form of GTD.


Assuntos
1-Acilglicerofosfocolina O-Aciltransferase/genética , Células Epitelioides/patologia , Doença Trofoblástica Gestacional/etiologia , Proteínas de Fusão Oncogênica/genética , Telomerase/genética , Neoplasias Trofoblásticas/patologia , Neoplasias Uterinas/patologia , 1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , Adulto , Biomarcadores Tumorais/genética , Proliferação de Células , Células Epitelioides/metabolismo , Feminino , Doença Trofoblástica Gestacional/patologia , Humanos , Pessoa de Meia-Idade , Proteínas de Fusão Oncogênica/metabolismo , Gravidez , Telomerase/metabolismo , Neoplasias Trofoblásticas/genética , Neoplasias Trofoblásticas/metabolismo , Neoplasias Uterinas/genética , Neoplasias Uterinas/metabolismo
4.
J Mol Diagn ; 23(5): 555-564, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33549857

RESUMO

Tumor mutation burden (TMB) is an emerging biomarker of immunotherapy response. RNA sequencing in FFPE tissue samples was used for determining TMB in microsatellite-stable (MSS) and microsatellite instability-high (MSI-H) tumors in patients with colorectal or endometrial cancer. Tissue from tumors and paired normal tissue from 46 MSI-H and 12 MSS cases were included. Of the MSI-H tumors, 29 had defective DNA mismatch-repair mutations, and 17 had MLH1 promoter hypermethylation. TMB was measured using the expressed somatic nucleotide variants (eTMB). A method of accurate measurement of eTMB was developed that removes FFPE-derived artifacts by leveraging mutation signatures. There was a significant difference in the median eTMB values observed between MSI-H and MSS cases: 27.3 versus 6.7 mutations/megabase (mut/Mb) (P = 3.5 × 10-9). Among tumors with defective DNA-mismatch repair, those with mismatch-repair mutations had a significantly higher median eTMB than those with hypermethylation: 28.1 versus 17.5 mut/Mb (P = 0.037). Multivariate analysis showed that MSI status, tumor type (endometrial or colorectal), and age were significantly associated with eTMB. Additionally, using whole-exome sequencing in a subset of these patients, it was determined that DNA TMB correlated well with eTMB (Spearman correlation coefficient, 0.83). These results demonstrate that RNA sequencing can be used for measuring eTMB in FFPE tumor specimens.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Colorretais/patologia , Reparo de Erro de Pareamento de DNA/genética , Neoplasias do Endométrio/patologia , Mutação , RNA-Seq/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias Colorretais/genética , Neoplasias do Endométrio/genética , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Retrospectivos
5.
J Mol Diagn ; 23(4): 375-388, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33387698

RESUMO

DNA junctions (DNAJs) frequently impact clinically relevant genes in tumors and are important for diagnostic and therapeutic purposes. Although routinely screened through fluorescence in situ hybridization assays, such testing only allows the interrogation of single-gene regions or known fusion partners. Comprehensive assessment of DNAJs present across the entire genome can only be determined from whole-genome sequencing. Structural variance analysis from whole-genome paired-end sequencing data is, however, frequently restricted to copy number changes without DNAJ detection. Through optimized whole-genome sequencing and specialized bioinformatics algorithms, complete structural variance analysis is reported, including DNAJs, from formalin-fixed DNA. Selective library assembly from larger fragments (>500 bp) and economical sequencing depths (300 to 400 million reads) provide representative genomic coverage profiles and increased allelic coverage to levels compatible with DNAJ calling (40× to 60×). Although consistently fragmented, more recently formalin-fixed, specimens (<2 years' storage) revealed consistent populations of larger DNA fragments. Optimized bioinformatics efficiently detected >90% of DNAJs in two prostate tumors (approximately 60% tumor) previously analyzed by mate-pair sequencing on fresh frozen tissue, with evidence of at least one spanning-read in 99% of DNAJs. Rigorous masking with data from unrelated formalin-fixed tissue progressively eliminated many false-positive DNAJs, without loss of true positives, resulting in low numbers of false-positive passing current filters. This methodology enables more comprehensive clinical genomics testing on formalin-fixed clinical specimens.


Assuntos
Fixadores/química , Formaldeído/química , Neoplasias/genética , Inclusão em Parafina/métodos , Fixação de Tecidos/métodos , Translocação Genética/genética , Sequenciamento Completo do Genoma/métodos , Algoritmos , Variações do Número de Cópias de DNA , DNA de Neoplasias/genética , DNA de Neoplasias/isolamento & purificação , Feminino , Genoma Humano , Genômica/métodos , Humanos , Masculino , Neoplasias/patologia
7.
Nature ; 580(7802): 245-251, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32269342

RESUMO

Radiologic screening of high-risk adults reduces lung-cancer-related mortality1,2; however, a small minority of eligible individuals undergo such screening in the United States3,4. The availability of blood-based tests could increase screening uptake. Here we introduce improvements to cancer personalized profiling by deep sequencing (CAPP-Seq)5, a method for the analysis of circulating tumour DNA (ctDNA), to better facilitate screening applications. We show that, although levels are very low in early-stage lung cancers, ctDNA is present prior to treatment in most patients and its presence is strongly prognostic. We also find that the majority of somatic mutations in the cell-free DNA (cfDNA) of patients with lung cancer and of risk-matched controls reflect clonal haematopoiesis and are non-recurrent. Compared with tumour-derived mutations, clonal haematopoiesis mutations occur on longer cfDNA fragments and lack mutational signatures that are associated with tobacco smoking. Integrating these findings with other molecular features, we develop and prospectively validate a machine-learning method termed 'lung cancer likelihood in plasma' (Lung-CLiP), which can robustly discriminate early-stage lung cancer patients from risk-matched controls. This approach achieves performance similar to that of tumour-informed ctDNA detection and enables tuning of assay specificity in order to facilitate distinct clinical applications. Our findings establish the potential of cfDNA for lung cancer screening and highlight the importance of risk-matching cases and controls in cfDNA-based screening studies.


Assuntos
DNA Tumoral Circulante/análise , DNA Tumoral Circulante/genética , Detecção Precoce de Câncer/métodos , Genoma Humano/genética , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Mutação , Estudos de Coortes , Feminino , Hematopoese/genética , Humanos , Pulmão/metabolismo , Pulmão/patologia , Neoplasias Pulmonares/sangue , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes
8.
Anal Chem ; 91(13): 8036-8044, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31188565

RESUMO

Single cell RNA sequencing is a technology that provides the capability of analyzing the transcriptome of a single cell from a population. So far, single cell RNA sequencing has been focused mostly on human cells due to the larger starting amount of RNA template for subsequent amplification. One of the major challenges of applying single cell RNA sequencing to microbial cells is to amplify the femtograms of the RNA template to obtain sufficient material for downstream sequencing with minimal contamination. To achieve this goal, efforts have been focused on multiround RNA amplification, but would introduce additional contamination and bias. In this work, we for the first time coupled a microfluidic platform with multiple displacement amplification technology to perform single cell whole transcriptome amplification and sequencing of Porphyromonas somerae, a microbe of interest in endometrial cancer, as a proof-of-concept demonstration of using single cell RNA sequencing tool to unveil gene expression heterogeneity in single microbial cells. Our results show that the bacterial single-cell gene expression regulation is distinct across different cells, supporting widespread heterogeneity.


Assuntos
Perfilação da Expressão Gênica/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Porphyromonas/genética , Análise de Célula Única/instrumentação , Transcriptoma , Desenho de Equipamento , Regulação Bacteriana da Expressão Gênica , Técnicas de Amplificação de Ácido Nucleico/instrumentação
9.
Blood Cancer J ; 9(1): 2, 2019 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-30607001

RESUMO

We used single cell RNA-Seq to examine molecular heterogeneity in multiple myeloma (MM) in 597 CD138 positive cells from bone marrow aspirates of 15 patients at different stages of disease progression. 790 genes were selected by coefficient of variation (CV) method and organized cells into four groups (L1-L4) using unsupervised clustering. Plasma cells from each patient clustered into at least two groups based on gene expression signature. The L1 group contained cells from all MGUS patients having the lowest expression of genes involved in the oxidative phosphorylation, Myc targets, and mTORC1 signaling pathways (p < 1.2 × 10-14). In contrast, the expression level of these pathway genes increased progressively and were the highest in L4 group containing only cells from MM patients with t(4;14) translocations. A 44 genes signature of consistently overexpressed genes among the four groups was associated with poorer overall survival in MM patients (APEX trial, p < 0.0001; HR, 1.83; 95% CI, 1.33-2.52), particularly those treated with bortezomib (p < 0.0001; HR, 2.00; 95% CI, 1.39-2.89). Our study, using single cell RNA-Seq, identified the most significantly affected molecular pathways during MM progression and provided a novel signature predictive of patient prognosis and treatment stratification.


Assuntos
Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Transcriptoma , Biópsia , Medula Óssea/patologia , Biologia Computacional/métodos , Progressão da Doença , Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Estimativa de Kaplan-Meier , Mieloma Múltiplo/mortalidade , Prognóstico , Análise de Sequência de RNA , Análise de Célula Única/métodos , Fluxo de Trabalho
10.
J Thorac Oncol ; 14(2): 276-287, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30316012

RESUMO

INTRODUCTION: Malignant pleural mesothelioma is a disease primarily associated with exposure to the carcinogen asbestos. Whereas other carcinogen-related tumors are associated with a high tumor mutation burden, mesothelioma is not. We sought to resolve this discrepancy. METHODS: We used mate-pair (n = 22), RNA (n = 28), and T cell receptor sequencing along with in silico predictions and immunologic assays to understand how structural variants of chromosomes affect the transcriptome. RESULTS: We observed that inter- or intrachromosomal rearrangements were present in every specimen and were frequently in a pattern of chromoanagenesis such as chromoplexy or chromothripsis. Transcription of rearrangement-related junctions was predicted to result in many potential neoantigens, some of which were proven to bind patient-specific major histocompatibility complex molecules and to expand intratumoral T cell clones. T cells responsive to these predicted neoantigens were also present in a patient's circulating T cell repertoire. Analysis of genomic array data from the mesothelioma cohort in The Cancer Genome Atlas suggested that multiple chromothriptic-like events negatively impact survival. CONCLUSIONS: Our findings represent the discovery of potential neoantigen expression driven by structural chromosomal rearrangements. These results may have implications for the development of novel immunotherapeutic strategies and the selection of patients to receive immunotherapies.


Assuntos
Antígenos/genética , Cromotripsia , Mesotelioma/genética , Neoplasias Pleurais/genética , Transcriptoma/genética , Seleção Clonal Mediada por Antígeno , Simulação por Computador , DNA de Neoplasias/análise , Dosagem de Genes , Rearranjo Gênico , Genômica , Antígenos HLA-A/genética , Antígenos HLA-B/genética , Humanos , Linfócitos do Interstício Tumoral , Mesotelioma/patologia , Peptídeos/genética , Peptídeos/imunologia , Neoplasias Pleurais/patologia , Receptores de Antígenos de Linfócitos T/genética , Análise de Sequência de DNA/métodos , Análise de Sequência de RNA , Taxa de Sobrevida , Linfócitos T/imunologia
11.
Clin Cancer Res ; 25(5): 1443-1445, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30446588

RESUMO

PD-L1 expression levels derived from >16,000 samples guided the selection of tumor types likely to benefit from pembrolizuamb monotherapy in clinical trials. Although not fail-proof, FDA approvals for most of the prioritized indications speak to the power of RNA expression profiling and the value of large genomic datasets.See related article by Ayers et al., p. 1564.


Assuntos
Antígeno B7-H1 , Neoplasias , Anticorpos Monoclonais Humanizados , Humanos , Imunoterapia , RNA
13.
J Mol Diagn ; 20(4): 495-511, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29929942

RESUMO

We assessed the performance characteristics of an RNA sequencing (RNA-Seq) assay designed to detect gene fusions in 571 genes to help manage patients with cancer. Polyadenylated RNA was converted to cDNA, which was then used to prepare next-generation sequencing libraries that were sequenced on an Illumina HiSeq 2500 instrument and analyzed with an in-house developed bioinformatic pipeline. The assay identified 38 of 41 gene fusions detected by another method, such as fluorescence in situ hybridization or RT-PCR, for a sensitivity of 93%. No false-positive gene fusions were identified in 15 normal tissue specimens and 10 tumor specimens that were negative for fusions by RNA sequencing or Mate Pair NGS (100% specificity). The assay also identified 22 fusions in 17 tumor specimens that had not been detected by other methods. Eighteen of the 22 fusions had not previously been described. Good intra-assay and interassay reproducibility was observed with complete concordance for the presence or absence of gene fusions in replicates. The analytical sensitivity of the assay was tested by diluting RNA isolated from gene fusion-positive cases with fusion-negative RNA. Gene fusions were generally detectable down to 12.5% dilutions for most fusions and as little as 3% for some fusions. This assay can help identify fusions in patients with cancer; these patients may in turn benefit from both US Food and Drug Administration-approved and investigational targeted therapies.


Assuntos
Neoplasias/genética , Fusão Oncogênica/genética , Análise de Sequência de RNA/métodos , Regulação Neoplásica da Expressão Gênica , Humanos , Limite de Detecção , Estabilidade de RNA/genética , RNA Neoplásico/genética , RNA Neoplásico/normas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
14.
J Natl Cancer Inst ; 110(10): 1123-1132, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29788332

RESUMO

Background: Attenuated measles virus (MV) strains are promising agents currently being tested against solid tumors or hematologic malignancies in ongoing phase I and II clinical trials; factors determining oncolytic virotherapy success remain poorly understood, however. Methods: We performed RNA sequencing and gene set enrichment analysis to identify pathways differentially activated in MV-resistant (n = 3) and -permissive (n = 2) tumors derived from resected human glioblastoma (GBM) specimens and propagated as xenografts (PDX). Using a unique gene signature we identified, we generated a diagonal linear discriminant analysis (DLDA) classification algorithm to predict MV responders and nonresponders, which was validated in additional randomly selected GBM and ovarian cancer PDX and 10 GBM patients treated with MV in a phase I trial. GBM PDX lines were also treated with the US Food and Drug Administration-approved JAK inhibitor, ruxolitinib, for 48 hours prior to MV infection and virus production, STAT1/3 signaling and interferon stimulated gene expression was assessed. All statistical tests were two-sided. Results: Constitutive interferon pathway activation, as reflected in the DLDA algorithm, was identified as the key determinant for MV replication, independent of virus receptor expression, in MV-permissive and -resistant GBM PDXs. Using these lines as the training data for the DLDA algorithm, we confirmed the accuracy of our algorithm in predicting MV response in randomly selected GBM PDX ovarian cancer PDXs. Using the DLDA prediction algorithm, we demonstrate that virus replication in patient tumors is inversely correlated with expression of this resistance gene signature (ρ = -0.717, P = .03). In vitro inhibition of the interferon response pathway with the JAK inhibitor ruxolitinib was able to overcome resistance and increase virus production (1000-fold, P = .03) in GBM PDX lines. Conclusions: These findings document a key mechanism of tumor resistance to oncolytic MV therapy and describe for the first time the development of a prediction algorithm to preselect for oncolytic treatment or combinatorial strategies.


Assuntos
Interferons/metabolismo , Neoplasias/metabolismo , Neoplasias/terapia , Terapia Viral Oncolítica , Transdução de Sinais , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Expressão Gênica , Genes Reporter , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Humanos , Vírus do Sarampo/genética , Camundongos , Neoplasias/patologia , Vírus Oncolíticos/genética , Reprodutibilidade dos Testes , Ensaios Antitumorais Modelo de Xenoenxerto
15.
BMC Genomics ; 19(1): 401, 2018 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-29801434

RESUMO

BACKGROUND: MicroRNA (miRNA) profiling is an important step in studying biological associations and identifying marker candidates. miRNA exists in isoforms, called isomiRs, which may exhibit distinct properties. With conventional profiling methods, limitations in assay and analysis platforms may compromise isomiR interrogation. RESULTS: We introduce a comprehensive approach to sequence-oriented isomiR annotation (CASMIR) to allow unbiased identification of global isomiRs from small RNA sequencing data. In this approach, small RNA reads are maintained as independent sequences instead of being summarized under miRNA names. IsomiR features are identified through step-wise local alignment against canonical forms and precursor sequences. Through customizing the reference database, CASMIR is applicable to isomiR annotation across species. To demonstrate its application, we investigated isomiR profiles in normal and neoplastic human colorectal epithelia. We also ran miRDeep2, a popular miRNA analysis algorithm to validate isomiRs annotated by CASMIR. With CASMIR, specific and biologically relevant isomiR patterns could be identified. We note that specific isomiRs are often more abundant than their canonical forms. We identify isomiRs that are commonly up-regulated in both colorectal cancer and advanced adenoma, and illustrate advantages in targeting isomiRs as potential biomarkers over canonical forms. CONCLUSIONS: Studying miRNAs at the isomiR level could reveal new insight into miRNA biology and inform assay design for specific isomiRs. CASMIR facilitates comprehensive annotation of isomiR features in small RNA sequencing data for isomiR profiling and differential expression analysis.


Assuntos
Neoplasias Colorretais/genética , Perfilação da Expressão Gênica , MicroRNAs/genética , Anotação de Sequência Molecular/métodos , Isoformas de RNA/genética , Análise de Sequência de RNA , Colo/metabolismo , Feminino , Humanos , Mucosa Intestinal/metabolismo , Masculino , Pessoa de Meia-Idade
16.
JCI Insight ; 3(8)2018 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-29669928

RESUMO

Although immune checkpoint inhibitors have resulted in durable clinical benefits in a subset of patients with advanced cancer, some patients who did not respond to initial anti-PD-1 therapy have been found to benefit from the addition of salvage chemotherapy. However, the mechanism responsible for the successful chemoimmunotherapy is not completely understood. Here we show that a subset of circulating CD8+ T cells expressing the chemokine receptor CX3CR1 are able to withstand the toxicity of chemotherapy and are increased in patients with metastatic melanoma who responded to chemoimmunotherapy (paclitaxel and carboplatin plus PD-1 blockade). These CX3CR1+CD8+ T cells have effector memory phenotypes and the ability to efflux chemotherapy drugs via the ABCB1 transporter. In line with clinical observation, our preclinical models identified an optimal sequencing of chemoimmunotherapy that resulted in an increase of CX3CR1+CD8+ T cells. Taken together, we found a subset of PD-1 therapy-responsive CD8+ T cells that were capable of withstanding chemotherapy and executing tumor rejection with their unique abilities of drug efflux (ABCB1), cytolytic activity (granzyme B and perforin), and migration to and retention (CX3CR1 and CD11a) at tumor sites. Future strategies to monitor and increase the frequency of CX3CR1+CD8+ T cells may help to design effective chemoimmunotherapy to overcome cancer resistance to immune checkpoint blockade therapy.


Assuntos
Linfócitos T CD8-Positivos/efeitos dos fármacos , Receptor 1 de Quimiocina CX3C/efeitos dos fármacos , Imunoterapia/métodos , Melanoma/imunologia , Neoplasias/tratamento farmacológico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Animais , Antineoplásicos/uso terapêutico , Linfócitos T CD8-Positivos/imunologia , Receptor 1 de Quimiocina CX3C/imunologia , Carboplatina/uso terapêutico , Citotoxinas/farmacologia , Quimioterapia Combinada , Feminino , Granzimas/farmacologia , Humanos , Masculino , Melanoma/tratamento farmacológico , Melanoma/secundário , Camundongos , Neoplasias/imunologia , Paclitaxel/uso terapêutico , Perforina/farmacologia
18.
Sci Rep ; 8(1): 2171, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29391594

RESUMO

Very little is known about how the adaptive immune system responds to clonal evolution and tumor heterogeneity in non-small cell lung cancer. We profiled the T-cell receptor ß complementarity determining region 3 in 20 patients with fully resected non-small cell lung cancer primary lesions and paired brain metastases. We characterized the richness, abundance and overlap of T cell clones between pairs, in addition to the tumor mutation burden and predicted neoantigens. We found a significant contraction in the number of unique T cell clones in brain metastases compared to paired primary cancers. The vast majority of T cell clones were specific to a single lesion, and there was minimal overlap in T cell clones between paired lesions. Despite the contraction in the number of T cell clones, brain metastases had higher non-synonymous mutation burdens than primary lesions. Our results suggest that there is greater richness of T cell clones in primary lung cancers than their paired metastases despite the higher mutation burden observed in metastatic lesions. These results may have implications for immunotherapy.


Assuntos
Adenocarcinoma/imunologia , Neoplasias Encefálicas/imunologia , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma de Células Escamosas/imunologia , Neoplasias Pulmonares/imunologia , Linfócitos T/imunologia , Adenocarcinoma/patologia , Idoso , Neoplasias Encefálicas/secundário , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma de Células Escamosas/patologia , Evolução Clonal , Feminino , Humanos , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Linfócitos T/patologia
19.
Clin Cancer Res ; 24(7): 1691-1704, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29351916

RESUMO

Purpose: Pulmonary carcinoid tumors account for up to 5% of all lung malignancies in adults, comprise 30% of all carcinoid malignancies, and are defined histologically as typical carcinoid (TC) and atypical carcinoid (AC) tumors. The role of specific genomic alterations in the pathogenesis of pulmonary carcinoid tumors remains poorly understood. We sought to identify genomic alterations and pathways that are deregulated in these tumors to find novel therapeutic targets for pulmonary carcinoid tumors.Experimental Design: We performed integrated genomic analysis of carcinoid tumors comprising whole genome and exome sequencing, mRNA expression profiling and SNP genotyping of specimens from normal lung, TC and AC, and small cell lung carcinoma (SCLC) to fully represent the lung neuroendocrine tumor spectrum.Results: Analysis of sequencing data found recurrent mutations in cancer genes including ATP1A2, CNNM1, MACF1, RAB38, NF1, RAD51C, TAF1L, EPHB2, POLR3B, and AGFG1 The mutated genes are involved in biological processes including cellular metabolism, cell division cycle, cell death, apoptosis, and immune regulation. The top most significantly mutated genes were TMEM41B, DEFB127, WDYHV1, and TBPL1 Pathway analysis of significantly mutated and cancer driver genes implicated MAPK/ERK and amyloid beta precursor protein (APP) pathways whereas analysis of CNV and gene expression data suggested deregulation of the NF-κB and MAPK/ERK pathways. The mutation signature was predominantly C>T and T>C transitions with a minor contribution of T>G transversions.Conclusions: This study identified mutated genes affecting cancer relevant pathways and biological processes that could provide opportunities for developing targeted therapies for pulmonary carcinoid tumors. Clin Cancer Res; 24(7); 1691-704. ©2018 AACR.


Assuntos
Tumor Carcinoide/genética , Neoplasias Pulmonares/genética , Mutação/genética , Transdução de Sinais/genética , Idoso , Peptídeos beta-Amiloides/genética , Carcinoma Neuroendócrino/genética , Carcinoma de Células Pequenas/genética , Ciclo Celular/genética , Exoma/genética , Feminino , Genômica/métodos , Humanos , Pulmão/patologia , Sistema de Sinalização das MAP Quinases/genética , Masculino , Pessoa de Meia-Idade , Proteínas Quinases Ativadas por Mitógeno , NF-kappa B/genética , Tumores Neuroendócrinos/genética , RNA Mensageiro/genética , Carcinoma de Pequenas Células do Pulmão/genética
20.
Science ; 359(6378): 926-930, 2018 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-29348365

RESUMO

Earlier detection is key to reducing cancer deaths. Here, we describe a blood test that can detect eight common cancer types through assessment of the levels of circulating proteins and mutations in cell-free DNA. We applied this test, called CancerSEEK, to 1005 patients with nonmetastatic, clinically detected cancers of the ovary, liver, stomach, pancreas, esophagus, colorectum, lung, or breast. CancerSEEK tests were positive in a median of 70% of the eight cancer types. The sensitivities ranged from 69 to 98% for the detection of five cancer types (ovary, liver, stomach, pancreas, and esophagus) for which there are no screening tests available for average-risk individuals. The specificity of CancerSEEK was greater than 99%: only 7 of 812 healthy controls scored positive. In addition, CancerSEEK localized the cancer to a small number of anatomic sites in a median of 83% of the patients.


Assuntos
DNA Tumoral Circulante/genética , Detecção Precoce de Câncer/métodos , Testes Hematológicos , Proteínas de Neoplasias/sangue , Neoplasias/diagnóstico , Neoplasias/cirurgia , Custos e Análise de Custo , Detecção Precoce de Câncer/economia , Testes Hematológicos/economia , Humanos , Mutação , Neoplasias/sangue , Neoplasias/genética , Reação em Cadeia da Polimerase/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA