Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 11(2): e0147818, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26881790

RESUMO

Rhabdomyolysis is common in very long-chain acyl-CoA dehydrogenase deficiency (VLCADD) and other metabolic myopathies, but its pathogenic basis is poorly understood. Here, we show that prolonged bicycling exercise against a standardized moderate workload in VLCADD patients is associated with threefold bigger changes in phosphocreatine (PCr) and inorganic phosphate (Pi) concentrations in quadriceps muscle and twofold lower changes in plasma acetyl-carnitine levels than in healthy subjects. This result is consistent with the hypothesis that muscle ATP homeostasis during exercise is compromised in VLCADD. However, the measured rates of PCr and Pi recovery post-exercise showed that the mitochondrial capacity for ATP synthesis in VLCADD muscle was normal. Mathematical modeling of oxidative ATP metabolism in muscle composed of three different fiber types indicated that the observed altered energy balance during submaximal exercise in VLCADD patients may be explained by a slow-to-fast shift in quadriceps fiber-type composition corresponding to 30% of the slow-twitch fiber-type pool in healthy quadriceps muscle. This study demonstrates for the first time that quadriceps energy balance during exercise in VLCADD patients is altered but not because of failing mitochondrial function. Our findings provide new clues to understanding the risk of rhabdomyolysis following exercise in human VLCADD.


Assuntos
Acil-CoA Desidrogenase de Cadeia Longa/deficiência , Trifosfato de Adenosina/biossíntese , Exercício Físico , Erros Inatos do Metabolismo Lipídico/metabolismo , Doenças Mitocondriais/metabolismo , Modelos Estatísticos , Doenças Musculares/metabolismo , Rabdomiólise/metabolismo , Acetilcarnitina/sangue , Acil-CoA Desidrogenase de Cadeia Longa/metabolismo , Adolescente , Adulto , Estudos de Casos e Controles , Síndrome Congênita de Insuficiência da Medula Óssea , Feminino , Humanos , Erros Inatos do Metabolismo Lipídico/complicações , Erros Inatos do Metabolismo Lipídico/patologia , Erros Inatos do Metabolismo Lipídico/fisiopatologia , Masculino , Mitocôndrias/metabolismo , Doenças Mitocondriais/complicações , Doenças Mitocondriais/patologia , Doenças Mitocondriais/fisiopatologia , Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares de Contração Rápida/patologia , Fibras Musculares de Contração Lenta/metabolismo , Fibras Musculares de Contração Lenta/patologia , Doenças Musculares/complicações , Doenças Musculares/patologia , Doenças Musculares/fisiopatologia , Fosforilação Oxidativa , Fosfatos/metabolismo , Fosfocreatina/metabolismo , Rabdomiólise/complicações , Rabdomiólise/patologia , Rabdomiólise/fisiopatologia
2.
Am J Physiol Cell Physiol ; 304(2): C180-93, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23114964

RESUMO

The hypothesis was tested that the variation of in vivo glycolytic flux with contraction frequency in skeletal muscle can be qualitatively and quantitatively explained by calcium-calmodulin activation of phosphofructokinase (PFK-1). Ischemic rat tibialis anterior muscle was electrically stimulated at frequencies between 0 and 80 Hz to covary the ATP turnover rate and calcium concentration in the tissue. Estimates of in vivo glycolytic rates and cellular free energetic states were derived from dynamic changes in intramuscular pH and phosphocreatine content, respectively, determined by phosphorus magnetic resonance spectroscopy ((31)P-MRS). Computational modeling was applied to relate these empirical observations to understanding of the biochemistry of muscle glycolysis. Hereto, the kinetic model of PFK activity in a previously reported mathematical model of the glycolytic pathway (Vinnakota KC, Rusk J, Palmer L, Shankland E, Kushmerick MJ. J Physiol 588: 1961-1983, 2010) was adapted to contain a calcium-calmodulin binding sensitivity. The two main results were introduction of regulation of PFK-1 activity by binding of a calcium-calmodulin complex in combination with activation by increased concentrations of AMP and ADP was essential to qualitatively and quantitatively explain the experimental observations. Secondly, the model predicted that shutdown of glycolytic ATP production flux in muscle postexercise may lag behind deactivation of PFK-1 (timescales: 5-10 s vs. 100-200 ms, respectively) as a result of accumulation of glycolytic intermediates downstream of PFK during contractions.


Assuntos
Glicólise/fisiologia , Músculo Esquelético/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Cálcio/análise , Cálcio/metabolismo , Calmodulina/química , Calmodulina/metabolismo , Simulação por Computador , Concentração de Íons de Hidrogênio , Isquemia/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Masculino , Modelos Biológicos , Contração Muscular/fisiologia , Fosfocreatina/análise , Fosfocreatina/metabolismo , Fosfofrutoquinase-1 Muscular/química , Fosfofrutoquinase-1 Muscular/metabolismo , Condicionamento Físico Animal/fisiologia , Ratos , Ratos Wistar
3.
Syst Biol (Stevenage) ; 153(5): 405-8, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16986328

RESUMO

Mitochondria in excitable cells are recurrently exposed to pulsatile calcium gradients that activate cell function. Rapid calcium uptake by the mitochondria has previously been shown to cause uncoupling of oxidative phosphorylation. To test (i) if periodic nerve firing may cause oscillation of the cytosolic thermodynamic potential of ATP hydrolysis and (ii) if cytosolic adenylate (AK) and creatine kinase (CK) ATP buffering reactions dampen such oscillations, a lumped kinetic model of an excitable cell capturing major aspects of the physiology has been developed. Activation of ATP metabolism by low-frequency calcium pulses caused large oscillation of the cytosolic, but not mitochondrial ATP/ADP, ratio. This outcome was independent of net ATP synthesis or hydrolysis during mitochondrial calcium uptake. The AK/CK ATP buffering reactions dampened the amplitude and rate of cytosolic ATP/ADP changes on a timescale of seconds, but not milliseconds. These model predictions suggest that alternative sources of capacitance in neurons and striated muscles should be considered to protect ATP-free energy-driven cell functions.


Assuntos
Trifosfato de Adenosina/metabolismo , Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Mitocôndrias/fisiologia , Modelos Neurológicos , Neurônios/fisiologia , Potenciais de Ação/fisiologia , Adaptação Fisiológica/fisiologia , Animais , Simulação por Computador , Citosol/metabolismo , Metabolismo Energético , Humanos , Cinética
4.
FASEB J ; 18(9): 1010-2, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15059964

RESUMO

It is generally thought that intracellular pH (pHi) of skeletal muscle falls at least 0.5 units during intense activity, but evidence on natural (i.e., voluntary, two-legged (2L)) locomotor activity in man has exclusively come from invasive studies of upper leg muscle. Here, noninvasive (31)P nuclear magnetic resonance spectroscopy ((31)P NMRS) was used to study human quadriceps muscle energetics and pHi during incremental bicycling exercise to exhaustion in six normally active subjects. Cellular energy charge (CEC; [PCr]/([PCr]+[Pi])) linearly (r 0.90) dropped 83 +/- 3% during ramp exercise to exhaustion from 0.92 +/- 0.01 at rest to 0.16 +/- 0.03 at maximal sustained work rate (WR) (166+/-17 W; range: 108-223 W). Surprisingly, pHi likewise dropped linearly (r 0.82) no more than 0.2 units over the entire range of WR between rest and maximal (pHi 7.08+/-0.01 and 6.84+/-0.02, respectively). But after termination of exercise pHi dropped rapidly to textbook acidic values of 6.6 explaining classic biopsy results. Comparative coresponse analysis of pHi and CEC changes during 2L- vs. 1L-cycling showed that homeostatic control of quadriceps pHi during bicycling is robust and unique to natural locomotor exercise. These results highlight the robustness of the integrative set of physicochemical and physiological control mechanisms in acid-base balance during natural locomotor activity in man.


Assuntos
Exercício Físico/fisiologia , Homeostase , Atividade Motora/fisiologia , Músculo Esquelético/fisiologia , Trifosfato de Adenosina/metabolismo , Adulto , Ciclismo/fisiologia , Feminino , Humanos , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Masculino
5.
Mol Biol Rep ; 29(1-2): 167-70, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12241050

RESUMO

J The [Ca2+] regulation of contractile ATPase flux, Jp, in skeletal muscle was analysed by computation of the Response R(Jp) Ca2+ for a 10 Hz range of electrical stimulation frequencies. Results of our analysis of the kinetic controls in ATP free energy metabolism in a network model of contracting muscle (J.A.L. Jeneson, H.V. Westerhoff and M.J. Kushmerick (2000) Am. J Physiol. 279, C813-C832) formed the basis for the computations of R(Jp) Ca2+. We found that neural regulation of sustained force generation via simple [Ca2+]cyto frequency encoding in the network was robust for frequencies up to 2 Hz. Above 2 Hz, however, this regulation design broke down because of a shift in contractile ATPase flux control from the Ca2+-sensitive contractile filaments to mitochondria with low Ca2+ sensitivity. The role of glyco(geno)lytic ATP production at high contraction workloads is discussed in the context of this result.


Assuntos
ATPases Transportadoras de Cálcio/metabolismo , Cálcio/metabolismo , Contração Muscular/fisiologia , Músculo Esquelético/metabolismo , Miosinas/metabolismo , Estimulação Elétrica , Humanos , Matemática , Mitocôndrias Musculares/enzimologia , Modelos Biológicos , Termodinâmica
6.
Neurology ; 58(7): 1088-93, 2002 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-11940698

RESUMO

BACKGROUND: Patients with isolated complex I deficiency (CID) in skeletal muscle mitochondria often present with exercise intolerance as their major clinical symptom. OBJECTIVE: To study the in vivo bioenergetics in patients with complex I deficiency in skeletal muscle mitochondria. METHODS: In vivo bioenergetics were studied in three of these patients by measuring oxygen uptake at rest and during maximal exercise, together with forearm ADP concentrations ([ADP]) at rest. Whole-body oxygen consumption at rest (VO(2)) was measured with respiratory calorimetry. Maximal oxygen uptake (VO(2)max) was measured during maximal exercise on a cycle ergometer. Resting [ADP] was estimated from in vivo (31)P MRS measurements of inorganic phosphate, phosphocreatine, and ATP content of forearm muscle. RESULTS: Resting VO(2) was significantly increased in all three patients: 128 +/- 14% (SD) of values in healthy control subjects. VO(2)max in patients was on average 2.8 times their VO(2) at rest and was only 28% of VO(2)max in control subjects. Resting [ADP] in forearm muscle was significantly increased compared with healthy control subjects (patients 26 +/- 2 microM, healthy controls 9 +/- 2 microM). CONCLUSION: In patients with CID, the increased whole-body oxygen consumption rate at rest reflects increased electron transport through the respiratory chain, driven by a decreased phosphorylation potential. The increased electron transport rate may compensate for the decreased efficiency of oxidative phosphorylation (phosphorylation potential).


Assuntos
Difosfato de Adenosina/metabolismo , Doenças Musculares/metabolismo , NADH NADPH Oxirredutases/deficiência , Consumo de Oxigênio/fisiologia , Adulto , Intervalos de Confiança , Complexo I de Transporte de Elétrons , Teste de Esforço/estatística & dados numéricos , Feminino , Humanos , Mitocôndrias Musculares/enzimologia , Doenças Musculares/enzimologia , Fosforilação Oxidativa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA