Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Cancer Discov ; 14(5): 846-865, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38456804

RESUMO

Oncology drug combinations can improve therapeutic responses and increase treatment options for patients. The number of possible combinations is vast and responses can be context-specific. Systematic screens can identify clinically relevant, actionable combinations in defined patient subtypes. We present data for 109 anticancer drug combinations from AstraZeneca's oncology small molecule portfolio screened in 755 pan-cancer cell lines. Combinations were screened in a 7 × 7 concentration matrix, with more than 4 million measurements of sensitivity, producing an exceptionally data-rich resource. We implement a new approach using combination Emax (viability effect) and highest single agent (HSA) to assess combination benefit. We designed a clinical translatability workflow to identify combinations with clearly defined patient populations, rationale for tolerability based on tumor type and combination-specific "emergent" biomarkers, and exposures relevant to clinical doses. We describe three actionable combinations in defined cancer types, confirmed in vitro and in vivo, with a focus on hematologic cancers and apoptotic targets. SIGNIFICANCE: We present the largest cancer drug combination screen published to date with 7 × 7 concentration response matrices for 109 combinations in more than 750 cell lines, complemented by multi-omics predictors of response and identification of "emergent" combination biomarkers. We prioritize hits to optimize clinical translatability, and experimentally validate novel combination hypotheses. This article is featured in Selected Articles from This Issue, p. 695.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias , Humanos , Linhagem Celular Tumoral , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
2.
BMC Cancer ; 19(1): 881, 2019 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-31488082

RESUMO

BACKGROUND: Gene expression profiling of rare cancers has proven challenging due to limited access to patient materials and requirement of intact, non-degraded RNA for next-generation sequencing. We customized a gene expression panel compatible with degraded RNA from formalin-fixed, paraffin-embedded (FFPE) patient cancer samples and investigated its utility in pathway activity profiling in patients with metaplastic breast cancer (MpBC). METHODS: Activity of various biological pathways was profiled in samples from nineteen patients with MpBC and 8 patients with invasive ductal carcinoma with triple negative breast cancer (TNBC) phenotype using a custom gene expression-based assay of 345 genes. RESULTS: MpBC samples of mesenchymal (chondroid and/or osteoid) histology demonstrated increased SNAI1 and BCL2L11 pathway activity compared to samples with non-mesenchymal histology. Additionally, late cornified envelope and keratinization genes were downregulated in MpBC compared to TNBC, and epithelial-to-mesenchymal transition (EMT) and collagen genes were upregulated in MpBC. Patients with high activity of an invasiveness gene expression signature, as well as high expression of the mesenchymal marker and extracellular matrix glycoprotein gene SPARC, experienced worse outcomes than those with low invasiveness activity and low SPARC expression. CONCLUSIONS: This study demonstrates the utility of gene expression profiling of metaplastic breast cancer FFPE samples with a custom counts-based assay. Gene expression patterns identified by this assay suggest that, although often histologically triple negative, patients with MpBC have distinct pathway activation compared to patients with invasive ductal TNBC. Incorporation of targeted therapies may lead to improved outcome for MpBC patients, especially in those patients expressing increased activity of invasiveness pathways.


Assuntos
Carcinoma Ductal de Mama/genética , Receptores de Fatores de Crescimento/metabolismo , Transdução de Sinais/genética , Transcriptoma/genética , Neoplasias de Mama Triplo Negativas/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Proteína 11 Semelhante a Bcl-2/metabolismo , Carcinoma Ductal de Mama/patologia , Estudos de Coortes , Transição Epitelial-Mesenquimal/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Pessoa de Meia-Idade , Osteonectina/genética , Fenótipo , Prognóstico , RNA-Seq/métodos , Fatores de Transcrição da Família Snail/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
3.
Int J Radiat Biol ; 95(2): 120-143, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30614743

RESUMO

PURPOSE: Low level laser therapy (LLLT) in the visible to near infrared spectral band (390-1100 nm) is absorption of laser light at the electronic level, without generation of heat. It may be applied in a wide range of treatments including wound healing, inflammation and pain reduction. Despite its potential beneficial impacts, the use of lasers for therapeutic purposes still remains controversial in mainstream medicine. Whilst taking into account the physical characteristics of different qualities of lasers, this review aims to provide a comprehensive account of the current literature available in the field pertaining to their potential impact at cellular and molecular levels elucidating mechanistic interactions in different mammalian models. The review also aims to focus on the integral approach of the optimal characteristics of LLLT that suit a biological system target to produce the beneficial effect at the cellular and molecular levels. METHODS: Recent research articles were reviewed that explored the interaction of lasers (coherent sources) and LEDs (incoherent sources) at the molecular and cellular levels. RESULTS: It is envisaged that underlying mechanisms of beneficial impact of lasers to patients involves biological processes at the cellular and molecular levels. The biological impact or effects of LLLT at the cellular and molecular level could include cellular viability, proliferation rate, as well as DNA integrity and the repair of damaged DNA. This review summarizes the available information in the literature pertaining to cellular and molecular effects of lasers. CONCLUSIONS: It is suggested that a change in approach is required to understand how to exploit the potential therapeutic modality of lasers whilst minimizing its possible detrimental effects.


Assuntos
Terapia com Luz de Baixa Intensidade , Dano ao DNA , Reparo do DNA , Humanos , Lasers Semicondutores
4.
Nat Commun ; 9(1): 572, 2018 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-29402882

RESUMO

The originally published version of this Article contained an error in Figure 4. In panel a, grey boxes surrounding the subclones associated with patients #2 and #4 obscured adjacent portions of the heatmap. This error has now been corrected in both the PDF and HTML versions of the Article.

5.
Nat Commun ; 8(1): 1231, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29093439

RESUMO

Metastatic breast cancer remains challenging to treat, and most patients ultimately progress on therapy. This acquired drug resistance is largely due to drug-refractory sub-populations (subclones) within heterogeneous tumors. Here, we track the genetic and phenotypic subclonal evolution of four breast cancers through years of treatment to better understand how breast cancers become drug-resistant. Recurrently appearing post-chemotherapy mutations are rare. However, bulk and single-cell RNA sequencing reveal acquisition of malignant phenotypes after treatment, including enhanced mesenchymal and growth factor signaling, which may promote drug resistance, and decreased antigen presentation and TNF-α signaling, which may enable immune system avoidance. Some of these phenotypes pre-exist in pre-treatment subclones that become dominant after chemotherapy, indicating selection for resistance phenotypes. Post-chemotherapy cancer cells are effectively treated with drugs targeting acquired phenotypes. These findings highlight cancer's ability to evolve phenotypically and suggest a phenotype-targeted treatment strategy that adapts to cancer as it evolves.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Evolução Clonal , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias da Mama/patologia , Células Cultivadas , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Mutação , Fenótipo , Transdução de Sinais/genética , Análise de Célula Única/métodos
6.
Genome Med ; 9(1): 40, 2017 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-28446242

RESUMO

BACKGROUND: The growth factor receptor network (GFRN) plays a significant role in driving key oncogenic processes. However, assessment of global GFRN activity is challenging due to complex crosstalk among GFRN components, or pathways, and the inability to study complex signaling networks in patient tumors. Here, pathway-specific genomic signatures were used to interrogate GFRN activity in breast tumors and the consequent phenotypic impact of GRFN activity patterns. METHODS: Novel pathway signatures were generated in human primary mammary epithelial cells by overexpressing key genes from GFRN pathways (HER2, IGF1R, AKT1, EGFR, KRAS (G12V), RAF1, BAD). The pathway analysis toolkit Adaptive Signature Selection and InteGratioN (ASSIGN) was used to estimate pathway activity for GFRN components in 1119 breast tumors from The Cancer Genome Atlas (TCGA) and across 55 breast cancer cell lines from the Integrative Cancer Biology Program (ICBP43). These signatures were investigated for their relationship to pro- and anti-apoptotic protein expression and drug response in breast cancer cell lines. RESULTS: Application of these signatures to breast tumor gene expression data identified two novel discrete phenotypes characterized by concordant, aberrant activation of either the HER2, IGF1R, and AKT pathways ("the survival phenotype") or the EGFR, KRAS (G12V), RAF1, and BAD pathways ("the growth phenotype"). These phenotypes described a significant amount of the variability in the total expression data across breast cancer tumors and characterized distinctive patterns in apoptosis evasion and drug response. The growth phenotype expressed lower levels of BIM and higher levels of MCL-1 proteins. Further, the growth phenotype was more sensitive to common chemotherapies and targeted therapies directed at EGFR and MEK. Alternatively, the survival phenotype was more sensitive to drugs inhibiting HER2, PI3K, AKT, and mTOR, but more resistant to chemotherapies. CONCLUSIONS: Gene expression profiling revealed a bifurcation pattern in GFRN activity represented by two discrete phenotypes. These phenotypes correlate to unique mechanisms of apoptosis and drug response and have the potential of pinpointing targetable aberration(s) for more effective breast cancer treatments.


Assuntos
Neoplasias da Mama/metabolismo , Regulação Neoplásica da Expressão Gênica , Genes Neoplásicos , Receptores de Fatores de Crescimento , Transdução de Sinais , Neoplasias da Mama/genética , Feminino , Perfilação da Expressão Gênica , Humanos
7.
Semin Cell Dev Biol ; 58: 108-17, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27338857

RESUMO

The rise in genomic knowledge over the past decade has revealed the molecular etiology of many diseases, and has identified intricate signaling network activity in human cancers. Genomics provides the opportunity to determine genome structure and capture the activity of thousands of molecular events concurrently, which is important for deciphering highly complex genetic diseases such as cancer. In this review, we focus on genomic efforts directed towards one of cancer's most frequently mutated networks, the RAS pathway. Genomic tools such as gene expression signatures and assessment of mutations across the RAS network enable the capture of RAS signaling complexity. Due to this high level of interaction and cross-talk within the network, efforts to target RAS signaling in the clinic have generally failed, and we currently lack the ability to directly inhibit the RAS protein with high efficacy. We propose that the use of gene expression data can identify effective treatments that broadly inhibit the RAS network as this approach measures pathway activity independent of mutation status or any single mechanism of activation. Here, we review the genomic studies that map the complexity of the RAS network in cancer, and that show how genomic measurements of RAS pathway activation can identify effective RAS inhibition strategies. We also address the challenges and future directions for treating RAS-driven tumors. In summary, genomic assessment of RAS signaling provides a level of complexity necessary to accurately map the network that matches the intricacy of RAS pathway interactions in cancer.


Assuntos
Genômica , Terapia de Alvo Molecular , Neoplasias/metabolismo , Neoplasias/terapia , Proteínas ras/metabolismo , Animais , Humanos , Modelos Biológicos , Neoplasias/genética , Neoplasias/patologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA