Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bone Res ; 12(1): 40, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38987568

RESUMO

Efficient cellular fusion of mononuclear precursors is the prerequisite for the generation of fully functional multinucleated bone-resorbing osteoclasts. However, the exact molecular factors and mechanisms controlling osteoclast fusion remain incompletely understood. Here we identify RANKL-mediated activation of caspase-8 as early key event during osteoclast fusion. Single cell RNA sequencing-based analyses suggested that activation of parts of the apoptotic machinery accompanied the differentiation of osteoclast precursors into mature multinucleated osteoclasts. A subsequent characterization of osteoclast precursors confirmed that RANKL-mediated activation of caspase-8 promoted the non-apoptotic cleavage and activation of downstream effector caspases that translocated to the plasma membrane where they triggered activation of the phospholipid scramblase Xkr8. Xkr8-mediated exposure of phosphatidylserine, in turn, aided cellular fusion of osteoclast precursors and thereby allowed generation of functional multinucleated osteoclast syncytia and initiation of bone resorption. Pharmacological blockage or genetic deletion of caspase-8 accordingly interfered with fusion of osteoclasts and bone resorption resulting in increased bone mass in mice carrying a conditional deletion of caspase-8 in mononuclear osteoclast precursors. These data identify a novel pathway controlling osteoclast biology and bone turnover with the potential to serve as target for therapeutic intervention during diseases characterized by pathologic osteoclast-mediated bone loss. Proposed model of osteoclast fusion regulated by caspase-8 activation and PS exposure. RANK/RANK-L interaction. Activation of procaspase-8 into caspase-8. Caspase-8 activates caspase-3. Active capase-3 cleaves Xkr8. Local PS exposure is induced. Exposed PS is recognized by the fusion partner. FUSION. PS is re-internalized.


Assuntos
Caspase 8 , Fusão Celular , Osteoclastos , Fosfatidilserinas , Proteínas de Transferência de Fosfolipídeos , Caspase 8/metabolismo , Caspase 8/genética , Animais , Osteoclastos/metabolismo , Fosfatidilserinas/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Proteínas de Transferência de Fosfolipídeos/genética , Camundongos , Camundongos Endogâmicos C57BL , Reabsorção Óssea/metabolismo , Reabsorção Óssea/patologia , Reabsorção Óssea/genética , Diferenciação Celular , Ligante RANK/metabolismo
2.
J Biol Chem ; 300(5): 107244, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38556087

RESUMO

Recent interest in the biology and function of peritoneal tissue resident macrophages (pMΦ) has led to a better understanding of their cellular origin, programming, and renewal. The programming of pMΦ is dependent on microenvironmental cues and tissue-specific transcription factors, including GATA6. However, the contribution of microRNAs remains poorly defined. We conducted a detailed analysis of the impact of GATA6 deficiency on microRNA expression in mouse pMΦ. Our data suggest that for many of the pMΦ, microRNA composition may be established during tissue specialization and that the effect of GATA6 knockout is largely unable to be rescued in the adult by exogenous GATA6. The data are consistent with GATA6 modulating the expression pattern of specific microRNAs, directly or indirectly, and including miR-146a, miR-223, and miR-203 established by the lineage-determining transcription factor PU.1, to achieve a differentiated pMΦ phenotype. Lastly, we showed a significant dysregulation of miR-708 in pMΦ in the absence of GATA6 during homeostasis and in response to LPS/IFN-γ stimulation. Overexpression of miR-708 in mouse pMΦ in vivo altered 167 mRNA species demonstrating functional downregulation of predicted targets, including cell immune responses and cell cycle regulation. In conclusion, we demonstrate dependence of the microRNA transcriptome on tissue-specific programming of tissue macrophages as exemplified by the role of GATA6 in pMΦ specialization.


Assuntos
Fator de Transcrição GATA6 , Macrófagos Peritoneais , MicroRNAs , Transcriptoma , Animais , Camundongos , Fator de Transcrição GATA6/metabolismo , Fator de Transcrição GATA6/genética , Regulação da Expressão Gênica , Lipopolissacarídeos/farmacologia , Macrófagos Peritoneais/metabolismo , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Especificidade de Órgãos , Proteínas Proto-Oncogênicas , Transativadores/genética , Transativadores/metabolismo
3.
J Vis Exp ; (204)2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38436380

RESUMO

Peritoneal tissue-resident macrophages have broad functions in the maintenance of homeostasis and are involved in pathologies within local and neighboring tissues. Their functions are dictated by microenvironmental cues; thus, it is essential to investigate their behavior in an in vivo physiological niche. Currently, specific peritoneal macrophage-targeting methodologies employ whole-mouse transgenic models. Here, a protocol for effective in vivo modulation of mRNA and small RNA species (e.g., microRNA) expression in peritoneal macrophages using lentivirus particles is described. Lentivirus preparations were made in HEK293T cells and purified on a single sucrose layer. In vivo validation of lentivirus effectivity following intraperitoneal injection revealed predominant infection of macrophages restricted to local tissue. Targeting of peritoneal macrophages was successful during homeostasis and thioglycolate-induced peritonitis. The limitations of the protocol, including low-level inflammation induced by intraperitoneal delivery of lentivirus and time restrictions for potential experiments, are discussed. Overall, this study presents a quick and accessible protocol for the rapid assessment of gene function in peritoneal macrophages in vivo.


Assuntos
MicroRNAs , Humanos , Animais , Camundongos , MicroRNAs/genética , Cavidade Peritoneal , Lentivirus/genética , Células HEK293 , Macrófagos , Modelos Animais de Doenças
4.
FEBS Lett ; 596(5): 567-588, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34618359

RESUMO

Unravelling the molecular mechanisms that account for functional pleiotropy is a major challenge for researchers in cytokine biology. Cytokine-receptor cross-reactivity and shared signalling pathways are considered primary drivers of cytokine pleiotropy. However, reports epitomized by studies of Jak-STAT cytokine signalling identify interesting biochemical and epigenetic determinants of transcription factor regulation that affect the delivery of signal-dependent cytokine responses. Here, a regulatory interplay between STAT transcription factors and their convergence to specific genomic enhancers support the fine-tuning of cytokine responses controlling host immunity, functional identity, and tissue homeostasis and repair. In this review, we provide an overview of the signalling networks that shape the way cells sense and interpret cytokine cues. With an emphasis on the biology of interleukin-6, we highlight the importance of these mechanisms to both physiological processes and pathophysiological outcomes.


Assuntos
Sinais (Psicologia) , Interleucina-6 , Citocinas/metabolismo , Interleucina-6/metabolismo , Janus Quinases/genética , Fatores de Transcrição STAT/genética , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais
5.
Cytokine ; 148: 155684, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34411990

RESUMO

The classification of interleukin-6 (IL-6) as a pro-inflammatory cytokine undervalues the biological impact of this cytokine in health and disease. With broad activities affecting the immune system, tissue homeostasis and metabolic processes, IL-6 displays complex biology. The significance of these involvements has become increasingly important in clinical settings where IL-6 is identified as a prominent target for therapy. Here, clinical experience with IL-6 antagonists emphasises the need to understand the context-dependent properties of IL-6 within an inflammatory environment and the anticipated or unexpected consequences of IL-6 blockade. In this review, we will describe the immunobiology of IL-6 and explore the gamut of IL-6 bioactivity affecting the clinical response to biological drugs targeting this cytokine pathway.


Assuntos
Doença , Saúde , Interleucina-6/metabolismo , Animais , Humanos , Percepção da Dor , Transdução de Sinais
6.
Kidney Int ; 99(5): 1127-1139, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33417998

RESUMO

Understanding why certain patients with IgA nephropathy progress to kidney failure while others maintain normal kidney function remains a major unanswered question. To help answer this, we performed miRNome profiling by next generation sequencing of kidney biopsies in order to identify microRNAs specifically associated with the risk of IgA nephropathy progression. Following sequencing and validation in independent cohorts, four microRNAs (-150-5p, -155-5p, -146b-5p, -135a-5p) were found to be differentially expressed in IgA nephropathy progressors compared to non-progressors, and patients with thin membrane nephropathy, lupus nephritis and membranous nephropathy, and correlated with estimated glomerular filtration rate, proteinuria, and the Oxford MEST-C scores (five histological features that are independent predictors of clinical outcome). Each individual microRNA increased the discrimination score of the International IgAN Prediction Tool, although due to the small number of samples the results did not reach statistical significance. miR-150-5p exhibited the largest amplitude of expression between cohorts and displayed the best discrimination between IgA nephropathy progressors and non-progressors by receiver operating curve analysis (AUC: 0.8). However, expression was similarly upregulated in kidneys with established fibrosis and low estimated glomerular filtration rates at the time of biopsy. Consistent with a more generic role in kidney fibrosis, in situ hybridization revealed that miR-150-5p was found in lymphoid infiltrates, and areas of proliferation and fibrosis consistent with the known drivers of progression. Thus, miR-150-5p may be a potential functional mediator of kidney fibrosis that may add value in predicting risk of progression in IgA nephropathy and other kidney diseases.


Assuntos
Glomerulonefrite por IGA , MicroRNAs , Biomarcadores , Progressão da Doença , Taxa de Filtração Glomerular , Glomerulonefrite por IGA/genética , Humanos , Rim , MicroRNAs/genética
7.
Exp Clin Transplant ; 13(6): 535-42, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26643673

RESUMO

OBJECTIVES: We evaluated a continuous, immediate, localized ischemic preconditioning regimen in a rat model of ischemia-reperfusion injury and assessed whether it attenuated injury at the histologic and molecular levels. MATERIALS AND METHODS: Fifteen adult male Lewis rats received sham operation, left unilateral warm ischemia (45 minutes of cross-clamping of the renal pedicle; ischemia-reperfusion injury group), or 15 minutes of ischemia followed by a 20-minute reperfusion period, 45 minutes of ischemia-reperfusion injury, and subsequent reperfusion (ischemic preconditioning/ischemia-reperfusion injury group). Kidney tissue was retrieved 48 hours later, sectioned, stained with hematoxylin and eosin, and examined. We used RNA extraction and real-time quantitative polymerase chain reaction analysis to assess acute kidney injury markers, cytokines, and microRNA-21. RESULTS: Forty-five minutes of unilateral ischemia-reperfusion injury caused marked changes in histology at 48 hours, characterized by endothelial loss, tubulointerstitial damage (inflammation, cast formation), tubular cell necrosis, and glomerular capsule thickening. The ischemia-reperfusion injury and ischemic preconditioning/ischemia-reperfusion injury groups showed no measurable differences in histology. Expression of the acute kidney injury markers was significantly increased in the ischemia-reperfusion injury versus Sham group; however, no difference was found between the ischemia reperfusion injury and ischemic preconditioning/ischemia-reperfusion injury groups. Similarly, expression of interleukin 17, interleukin 18, and tumor necrosis factor ? was significantly increased in the ischemia-reperfusion injury versus Sham group. No significant difference was found between the ischemia-reperfusion injury and ischemic preconditioning/ischemia-reperfusion injury groups for interleukin 17 and interleukin 18; however, tumor necrosis factor ? expression was significantly increased in the ischemic preconditioning/ischemia-reperfusion injury versus ischemia-reperfusion injury group. CONCLUSIONS: In our ischemic preconditioning model, tumor necrosis factor α expression was increased without altering the sequelae of ischemia-reperfusion injury. The long-term consequences of this augmented early inflammatory response and whether these consequences are altered by variations in ischemic preconditioning or a subsequent injury require further study.


Assuntos
Precondicionamento Isquêmico , Fator de Necrose Tumoral alfa/análise , Animais , Histocitoquímica , Rim/metabolismo , Rim/patologia , Masculino , Ratos , Ratos Endogâmicos Lew , Reação em Cadeia da Polimerase em Tempo Real , Traumatismo por Reperfusão/patologia
8.
Biochem Soc Trans ; 42(4): 1219-23, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25110028

RESUMO

miRNAs are small, endogenous, post-transcriptional regulators of gene expression. AKI (acute kidney injury) of various aetiologies, including trauma, sepsis and IRI (ischaemia/reperfusion injury) in the context of kidney transplantation, or drug toxicity, has a high morbidity and mortality rate and presents a significant burden to health services worldwide. AKI primarily affects the renal cortex, in particular PTCs (proximal tubular epithelial cells). Current research demonstrates causality between G2/M cell cycle arrest of PTCs and AKI. Recent findings from our laboratory and others presented in this review implicate miRNA regulation of the cell cycle in the pathology of AKI.


Assuntos
Injúria Renal Aguda/metabolismo , MicroRNAs/metabolismo , Injúria Renal Aguda/genética , Animais , Ciclo Celular/genética , Ciclo Celular/fisiologia , Humanos , Túbulos Renais Proximais/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
9.
Am J Pathol ; 184(4): 996-1009, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24508230

RESUMO

Aristolochic acid nephropathy is characterized by rapidly progressive tubulointerstitial nephritis culminating in end-stage renal failure and urothelial malignancy. Profibrotic effects of aristolochic acid are linked to growth arrest of proximal tubular epithelial cells; however, the underlying mechanisms are largely undetermined. miRNAs are small, endogenous, post-transcriptional regulators of gene expression implicated in numerous physiological and pathological processes. In the present study, we characterized the mechanism of aristolochic acid-induced cell cycle arrest and its regulation by miRNAs. Incubation with aristolochic acid led to profound G2/M arrest in proximal tubular epithelial cells via p53-mediated inactivation of the maturation-promoting complex, CDK1/cyclin-B1. Analysis of miRNA expression identified up-regulation of miRNAs, including miR-192, miR-194, miR-450a, and miR-542-3p. The stable overexpression of miR-192 recapitulated G2/M arrest via repression of the E3 ubiquitin ligase, murine double-minute 2, a negative regulator of p53. p53-induced transcription of p21(cip1) and growth arrest and DNA damage 45 and resulted in the inactivation and dissociation of the maturation-promoting complex. These data demonstrate a core role for miR-192 in mediating proximal tubular epithelial cell G2/M arrest after toxic injury by aristolochic acid. Because numerous studies have linked such growth arrest to fibrosis after proximal tubular epithelial cell injury, this mechanism may have widespread relevance to recovery/nonrecovery after acute kidney injury.


Assuntos
Ácidos Aristolóquicos/intoxicação , Pontos de Checagem da Fase G2 do Ciclo Celular/genética , Nefropatias/patologia , Pontos de Checagem da Fase M do Ciclo Celular/genética , MicroRNAs/genética , Western Blotting , Células Cultivadas , Células Epiteliais/patologia , Citometria de Fluxo , Imunofluorescência , Humanos , Imunoprecipitação , Nefropatias/induzido quimicamente , Túbulos Renais Proximais/patologia , MicroRNAs/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/fisiologia
10.
Biochem J ; 443(2): 407-16, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22264233

RESUMO

miR (microRNA)-192 plays key roles in renal pathological and physiological responses, by repressing targets including Zeb1, Zeb2 and Wnk1. In the present study, we have assessed the regulation of miR-192 expression. We found that TGF-ß1 (transforming growth factor ß1) down-regulates miR-192 and miR-194, co-transcribed in the shared precursor pri-miR (primary miR transcript)-192/194. Luciferase reporter analysis showed constitutive promoter activity within nucleotides +21 to -223. We identified HNF (hepatocyte nuclear factor) and p53 binding sites within this region that were required for constitutive promoter activity, which was decreased by TGF-ß1 through an Alk5-dependent mechanism. TGF-ß1 treatment decreased HNF binding to the miR-194-2/192 promoter, whereas knockdown of HNF-1 inhibited mature miR-192 and miR-194 expression. miR-192, miR-194 and HNF expression were restricted to a defined subset of human tissues including kidney, small intestine, colon and liver. Our results from the present study identify co-ordinated regulation of miR-192 and miR-194, with binding of HNF and p53 transcription factors necessary for activation of transcription, and TGF-ß1-mediated repression through decreased HNF binding to its cognate promoter element.


Assuntos
DNA/metabolismo , Regulação para Baixo , Fatores Nucleares de Hepatócito/metabolismo , MicroRNAs/genética , Fator de Crescimento Transformador beta1/metabolismo , Sequência de Bases , Células Cultivadas , DNA/genética , Fatores Nucleares de Hepatócito/genética , Humanos , Regiões Promotoras Genéticas , Ligação Proteica , RNA Interferente Pequeno/genética , Fator de Crescimento Transformador beta1/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
11.
PLoS One ; 6(10): e25044, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21991303

RESUMO

Transforming Growth Factor Beta-1 (TGF-ß1) is a pleiotropic cytokine that is of central importance in wound healing, inflammation, and in key pathological processes including cancer and progressive tissue fibrosis. TGF-ß1 is post-transcriptionally regulated, but the underlying mechanisms remain incompletely defined. Previously, we have extensively delineated post-transcriptional regulation of TGF-ß1 synthesis in the kidney, with evidence for relief of translational repression in proximal tubular cells in the context of diabetic nephropathy. In this study, we have investigated the role of the TGF-ß1 3'Untranslated Region (3'UTR). Two different 3'UTR lengths have been reported for TGF-ß1, of 543 and 137 nucleotides. Absolute quantification showed that, while both UTR lengths were detectable in various human cell types and in a broad range of tissues, the short form predominated in the kidney and elsewhere. Expression of both forms was up-regulated following auto-induction by TGF-ß1, but the short:long UTR ratio remained constant. Incorporation of the short UTR into a luciferase reporter vector significantly reduced reporter protein synthesis without major effect on RNA amount, suggesting post-transcriptional inhibition. In silico approaches identified multiple binding sites for miR-744 located in the proximal TGF-ß1 3'UTR. A screen in RNA from human tissues showed widespread miR-744 expression. miR-744 transfection inhibited endogenous TGF-ß1 synthesis, while direct targeting of TGF-ß1 was shown in separate experiments, in which miR-744 decreased TGF-ß1 3'UTR reporter activity. This work identifies miR-744-directed post-transcriptional regulation of TGF-ß1 which, given the pleiotropic nature of cellular responses to TGF-ß1, is potentially widely significant.


Assuntos
Regulação da Expressão Gênica , MicroRNAs/metabolismo , Transcrição Gênica , Fator de Crescimento Transformador beta1/genética , Regiões 3' não Traduzidas/genética , Sequência de Bases , Linhagem Celular , Núcleo Celular/genética , Sequência Conservada/genética , Variações do Número de Cópias de DNA/genética , Perfilação da Expressão Gênica , Genes Reporter/genética , Humanos , MicroRNAs/genética , Dados de Sequência Molecular , Nucleotídeos/genética , Especificidade de Órgãos/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Alinhamento de Sequência , Transfecção , Fator de Crescimento Transformador beta1/metabolismo
12.
J Biol Chem ; 279(40): 41453-60, 2004 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-15271981

RESUMO

During the initiation and progression of fibrosis there is extensive differentiation of cells to a myofibroblastic phenotype. Because the synthesis of hyaluronan (HA) was recently linked to oncogenic epithelial-mesenchymal transformation, the present study investigated whether increased HA synthesis was also associated with myofibroblastic differentiation. HA synthesis and size were measured by incorporation of [(3)H]glucosamine, ion exchange, and size exclusion chromatography. Hyaluronan synthase (HAS) or hyaluronidase (HYAL) mRNA levels were assessed by reverse transcription-PCR. HYAL was detected by immunoblotting and the degradation of [(3)H]HA. Between 2- and 3-fold more HA appeared in the conditioned medium and became associated with the cells upon myofibroblastic differentiation. Inhibition of HAS and examination of HAS mRNA expression demonstrated that this was not the result of increased synthesis of HA or the induction of HAS 2. After differentiation, however, myofibroblasts metabolized exogenously supplied [(3)H]HA at a slower rate than fibroblasts and expressed lower levels of both HYAL 1 and HYAL 2 mRNA. Immunoblotting revealed more HYAL 1 and 2 in the myofibroblast conditioned medium. After acidification, however, there was no difference in HA degradation. This suggests that much of the released HYAL is inactive and that the observed differences in HA degradation are caused by cell-associated rather than secreted activity. This was confirmed by immunohistochemical staining for HYAL 1 and HYAL 2. This finding indicates the potential importance of the HYAL enzymes in controlling fibrotic progression and contrasts HA synthesis as a mediator of oncogenic transformation with that of HA degradation controlling fibrogenic differentiation.


Assuntos
Fibroblastos/citologia , Fibrose/etiologia , Ácido Hialurônico/metabolismo , Moléculas de Adesão Celular/análise , Diferenciação Celular , Linhagem Celular , Fibrose/patologia , Proteínas Ligadas por GPI , Glucuronosiltransferase , Humanos , Hialuronan Sintases , Ácido Hialurônico/análise , Hialuronoglucosaminidase/análise , Hialuronoglucosaminidase/genética , Pulmão , Células Musculares/citologia , Fenótipo , RNA Mensageiro/análise , Transferases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA