Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
NPJ Breast Cancer ; 9(1): 35, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37160903

RESUMO

Molecular links between breast cancer risk factors and pro-oncogenic tissue alterations are poorly understood. The goal of this study was to characterize the impact of overweight and obesity on tissue markers of risk, using normal breast biopsies, a mouse model of diet-induced obesity, and cultured breast acini. Proliferation and alteration of epithelial polarity, both necessary for tumor initiation, were quantified by immunostaining. High BMI (>30) and elevated leptin were associated with compromised epithelial polarity whereas overweight was associated with a modest increase in proliferation in human and mice mammary glands. Human serum with unfavorable adipokine levels altered epithelial polarization of cultured acini, recapitulating the effect of leptin. Weight loss in mice led to metabolic improvements and restored epithelial polarity. In acini cultures, alteration of epithelial polarity was prevented by antioxidants and could be reverted by normalizing culture conditions. This study shows that obesity and/or dietary factors modulate tissue markers of risk. It provides a framework to set target values for metabolic improvements and to assess the efficacy of interventional studies aimed at reducing breast cancer risk.

2.
Oncogene ; 38(20): 3855-3870, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30670780

RESUMO

Obesity is a highly prevalent and modifiable breast cancer risk factor. While the role of obesity in fueling breast cancer progression is well established, the mechanisms linking obesity to breast cancer initiation are poorly understood. A hallmark of breast cancer initiation is the disruption of apical polarity in mammary glands. Here we show that mice with diet-induced obesity display mislocalization of Par3, a regulator of cellular junctional complexes defining mammary epithelial polarity. We found that epithelial polarity loss also occurs in a 3D coculture system that combines acini with human mammary adipose tissue, and establish that a paracrine effect of the tissue adipokine leptin causes loss of polarity by overactivation of the PI3K/Akt pathway. Leptin sensitizes non-neoplastic cells to proliferative stimuli, causes mitotic spindle misalignment, and expands the pool of cells with stem/progenitor characteristics, which are early steps for cancer initiation. We also found that normal breast tissue samples with high leptin/adiponectin transcript ratio characteristic of obesity have an altered distribution of apical polarity markers. This effect is associated with increased epithelial cell layers. Our results provide a molecular basis for early alterations in epithelial architecture during obesity-mediated cancer initiation.


Assuntos
Neoplasias da Mama/patologia , Leptina/sangue , Glândulas Mamárias Animais/patologia , Glândulas Mamárias Humanas/patologia , Proteínas Adaptadoras de Transdução de Sinal , Adipocinas/metabolismo , Tecido Adiposo/metabolismo , Animais , Índice de Massa Corporal , Neoplasias da Mama/metabolismo , Moléculas de Adesão Celular/metabolismo , Proteínas de Ciclo Celular , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Feminino , Humanos , Leptina/genética , Leptina/metabolismo , Glândulas Mamárias Humanas/metabolismo , Camundongos Endogâmicos BALB C , Obesidade/metabolismo , Obesidade/patologia , Lesões Pré-Cancerosas , Fuso Acromático/metabolismo , Fuso Acromático/patologia
3.
Sci Rep ; 7(1): 8232, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28811502

RESUMO

Leptin is an adipokine produced by fat cells that regulates food consumption and metabolic activity. Sexual dimorphism in leptin and fat stores have been observed in humans and rodents with females having more leptin and greater levels of subcutaneous fat than males. One potential mechanism leading to this dimorphism is steroid hormone regulated synthesis of transcripts encoding leptin. Identification of direct regulatory mechanisms is difficult in animals or primary adipocytes due to these intertwined dimorphisms. We used well-characterized 3T3-L1 murine adipocytes to demonstrate that dihydrotestosterone (DHT) reduced Leptin (Lep) transcript abundance and cytosolic and secreted leptin protein. The magnitude of this effect was greatest on secreted leptin, which was decreased by DHT to 30% of the control. In contrast, 17ß-estradiol significantly increased the abundance of transcripts encoding leptin and increased secreted leptin to 230% of the control. Treatment with estrogen and androgen receptor antagonists had opposite effects on Lep transcript abundance to steroid treatments, indicating that these transcriptional effects are mediated through the canonical steroid hormone signaling pathways. These results indicate that short-term treatments with steroid hormones are sufficient to alter both Lep transcript accumulation and leptin protein secretion, and may play a role in the sexual dimorphism of this adipokine.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Hormônios Esteroides Gonadais/farmacologia , Leptina/biossíntese , Leptina/genética , Transcrição Gênica , Células 3T3-L1 , Antagonistas de Receptores de Andrógenos/farmacologia , Animais , Células Cultivadas , Di-Hidrotestosterona/farmacologia , Estradiol/farmacologia , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA