Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Ecol ; 31(24): 6531-6540, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36205590

RESUMO

A plethora of intrinsic and environmental factors have been shown to influence the length of telomeres, the protector of chromosome ends. Despite the growing interest in infection-telomere interactions, there is very limited knowledge on how transmissible cancers influence telomere maintenance. An emblematic example of transmissible cancer occurs in the Tasmanian devil (Sarcophilus harrisii), whose populations have been dramatically reduced by infectious cancer cells. To investigate associations between telomere dynamics and the transmissible cancer, we used longitudinal data from a Tasmanian devil population that has been exposed to the disease for over 15 years. We detected substantial temporal variation in individual telomere length (TL), and a positive significant association between TL and age, as well as a marginally significant trend for devils with devil facial tumour disease (DFTD) having longer telomeres. A proportional hazard analysis yielded no significant effect of TL on the development of DFTD. Like previous studies, we show the complexity that TL dynamics may exhibit across the lifetime of organisms. Our work highlights the importance of long-term longitudinal sampling for understanding the effects of wildlife diseases on TL.


Assuntos
Neoplasias Faciais , Marsupiais , Animais , Animais Selvagens/genética , Neoplasias Faciais/epidemiologia , Neoplasias Faciais/genética , Neoplasias Faciais/patologia , Marsupiais/genética , Telômero/genética
2.
Evol Appl ; 12(9): 1772-1780, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31548856

RESUMO

Emerging infectious diseases are rising globally and understanding host-pathogen interactions during the initial stages of disease emergence is essential for assessing potential evolutionary dynamics and designing novel management strategies. Tasmanian devils (Sarcophilus harrisii) are endangered due to a transmissible cancer-devil facial tumour disease (DFTD)-that since its emergence in the 1990s, has affected most populations throughout Tasmania. Recent studies suggest that devils are adapting to the DFTD epidemic and that disease-induced extinction is unlikely. However, in 2014, a second and independently evolved transmissible cancer-devil facial tumour 2 (DFT2)-was discovered at the d'Entrecasteaux peninsula, in south-east Tasmania, suggesting that the species is prone to transmissible cancers. To date, there is little information about the distribution, epidemiology and effects of DFT2 and its interaction with DFTD. Here, we use data from monitoring surveys and roadkills found within and adjacent to the d'Entrecasteaux peninsula to determine the distribution of both cancers and to compare their epidemiological patterns. Since 2012, a total of 51 DFTD tumours have been confirmed among 26 individuals inside the peninsula and its surroundings, while 40 DFT2 tumours have been confirmed among 23 individuals, and two individuals co-infected with both tumours. All devils with DFT2 were found within the d'Entrecasteaux peninsula, suggesting that this new transmissible cancer is geographically confined to this area. We found significant differences in tumour bodily location in DFTD and DFT2, with non-facial tumours more commonly found in DFT2. There was a significant sex bias in DFT2, with most cases reported in males, suggesting that since DFT2 originated from a male host, females might be less susceptible to this cancer. We discuss the implications of our results for understanding the epidemiological and evolutionary interactions of these two contemporary transmissible cancers and evaluating the effectiveness of potential management strategies.

3.
Evol Appl ; 12(6): 1092-1095, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31293625

RESUMO

While obesity is widely recognized as a risk factor for cancer, survival among patients with cancer is often higher for obese than for lean individuals. Several hypotheses have been proposed to explain this "obesity paradox," but no consensus has yet emerged. Here, we propose a novel hypothesis to add to this emerging debate which suggests that lean healthy persons present conditions unfavorable to malignant transformation, due to powerful natural defenses, whereby only rare but aggressive neoplasms can emerge and develop. In contrast, obese persons present more favorable conditions for malignant transformation, because of several weight-associated factors and less efficient natural defenses, leading to a larger quantity of neoplasms comprising both nonaggressive and aggressive ones to regularly emerge and progress. If our hypothesis is correct, testing would require the consideration of the raw quantity, not the relative frequency, of aggressive cancers in obese patients compared with lean ones. We also discuss the possibility that in obese persons, nonaggressive malignancies may prevent the subsequent progression of aggressive cancers through negative competitive interactions between tumors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA