RESUMO
The capture of circulating tumor cells (CTCs) is still a challenging application for microfluidic chips, as these cells are rare and hidden in a huge background of blood cells. Here, different microfluidic ceiling designs in regard to their capture efficiency for CTCs in model experiments and more realistic conditions of blood samples spiked with a clinically relevant amount of tumor cells are evaluated. An optimized design for the capture platform that allows highly efficient recovery of CTCs from size-based pre-enriched samples under realistic conditions is obtained. Furthermore, the viability of captured tumor cells as well as single cell recovery for downstream genomic analysis is demonstrated. Additionally, the authors' findings underline the importance of evaluating rational design rules for microfluidic devices based on theoretical models by application-specific experiments.
Assuntos
Separação Celular , Técnicas Analíticas Microfluídicas , Células Neoplásicas Circulantes/química , Linhagem Celular Tumoral , Separação Celular/instrumentação , Separação Celular/métodos , Sobrevivência Celular , Desenho de Equipamento , Humanos , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodosRESUMO
BACKGROUND AND PURPOSE: HPV-positive HNSCC cells are characterized by radiosensitivity, inefficient DNA double-strand break repair and a profound and prolonged arrest in G2. Here we explored the effect of clinically relevant inhibitors of Chk1 and Wee1 to inhibit the radiation-induced G2-arrest in order to achieve further radiosensitization. MATERIAL AND METHODS: Assessment of Chk1 activity by Western blot; assessment of cell cycle distribution by propidium iodide staining and flow cytometry; assessment of cell survival by colony formation assay. HPV+ HNSCC cell lines: UD-SCC-2, UM-SCC-47 and UPCI-SCC-154; Chk1 inhibitors: LY2603618, MK8776; Wee1 inhibitor: AZD1775. RESULTS: Specific Chk1 inhibitors efficiently abrogated the radiation-induced G2-arrest and caused radiosensitization. Wee-inhibition by AZD1775 resulted in the activation of Chk1. This feedback mechanism is likely to counteract some of the effects of Wee1 inhibition but could be antagonized through the combined inhibition of both kinases. Combined inhibition was effective using profoundly reduced concentrations of both inhibitors and resulted in more efficient radiosensitization of the HPV-positive cell lines compared to p53 proficient normal human fibroblasts. CONCLUSIONS: Specific Chk1 inhibitors as well as the combined inhibition of Chk1 and Wee1 radiosensitize HPV-positive HNSCC cells.