RESUMO
Respiratory infections caused by the human fungal pathogen Aspergillus fumigatus are a major cause of mortality for immunocompromised patients. Exposure to these pathogens occurs through inhalation, although the role of the respiratory epithelium in disease pathogenesis has not been fully defined. Employing a primary human airway epithelial model, we demonstrate that fungal melanins potently block the post-translational secretion of the chemokines CXCL1 and CXCL8 independent of transcription or the requirement of melanin to be phagocytosed, leading to a significant reduction in neutrophil recruitment to the apical airway both in vitro and in vivo. Aspergillus-derived melanin, a major constituent of the fungal cell wall, dampened airway epithelial chemokine secretion in response to fungi, bacteria, and exogenous cytokines. Furthermore, melanin muted pathogen-mediated calcium fluxing and hindered actin filamentation. Taken together, our results reveal a critical role for melanin interaction with airway epithelium in shaping the host response to fungal and bacterial pathogens.
Assuntos
Aspergillus fumigatus , Cálcio , Quimiocina CXCL1 , Interleucina-8 , Melaninas , Melaninas/metabolismo , Humanos , Interleucina-8/metabolismo , Cálcio/metabolismo , Quimiocina CXCL1/metabolismo , Animais , Mucosa Respiratória/metabolismo , Mucosa Respiratória/microbiologia , Camundongos , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Quimiocinas/metabolismo , Camundongos Endogâmicos C57BLRESUMO
PURPOSE: To determine the effects of dietary omega-3 polyunsaturated fatty acids (PUFAs) on recruitment of natural killer (NK) cells and resolution responses in antigen-induced peritonitis in mice. METHODS: Mice were fed fish oil-enriched or control diets, immunized twice and challenged intraperitoneally with methylated bovine serum albumin. Prior to and at different time-points following inflammation induction, expression of surface molecules on peritoneal cells was determined by flow cytometry, concentration of soluble mediators in peritoneal fluid by ELISA or Luminex, and of lipid mediators by LC-MS/MS, and number of apoptotic cells in mesenteric lymph nodes by TUNEL staining. RESULTS: Mice fed the fish oil diet had higher number of CD11b+CD27- NK cells as well as a higher proportion of CD107a+ NK cells in their peritoneum 6 h after inflammation induction than mice fed the control diet. They also had higher numbers of CCR5+ NK cells and higher concentrations of CCL5 and CXCL12. Additionally, a higher fraction of apoptotic neutrophils but lower fraction of CD47+ neutrophils were present in the peritoneum of mice fed the fish oil diet 6 h after inflammation induction and the fish oil fed mice had a shorter resolution interval. They also had lower concentrations of pro-inflammatory mediators but higher concentrations of the anti-inflammatory/pro-resolution mediators TGF-ß, IGF-1, and soluble TNF RII, as well as higher ratios of hydroxyeicosapentaenoic acid (HEPE) to hydroxyeicosatetraenoic acid (HETE) than mice fed the control diet. CONCLUSION: The results demonstrate that dietary fish oil increases the number of mature NK cells at the inflamed site in antigen-induced peritonitis and enhances several key hallmarks of resolution of inflammation, casting light on the potential mechanisms involved.
RESUMO
Waldenström's macroglobulinemia (WM) is a non-Hodgkin lymphoma, resulting in antibody-secreting lymphoplasmacytic cells in the bone marrow and pathologies resulting from high levels of monoclonal immunoglobulin M (IgM) in the blood. Despite the key role for BLIMP1 in plasma cell maturation and antibody secretion, its potential effect on WM cell biology has not yet been explored. Here we provide evidence of a crucial role for BLIMP1 in the survival of cells from WM cell line models and further demonstrate that BLIMP1 is necessary for the expression of the histone methyltransferase EZH2 in both WM and multiple myeloma cell lines. The effect of BLIMP1 on EZH2 levels is post-translational, at least partially through the regulation of proteasomal targeting of EZH2. Chromatin immunoprecipitation analysis and transcriptome profiling suggest that the two factors co-operate in regulating genes involved in cancer cell immune evasion. Co-cultures of natural killer cells and cells from a WM cell line further suggest that both factors participate in immune evasion by promoting escape from natural killer cell-mediated cytotoxicity. Together, the interplay of BLIMP1 and EZH2 plays a vital role in promoting the survival of WM cell lines, suggesting a role for the two factors in Waldenström's macroglobulinaemia.