Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(42)2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34663697

RESUMO

Trained immunity defines long-lasting adaptations of innate immunity based on transcriptional and epigenetic modifications of myeloid cells and their bone marrow progenitors [M. Divangahi et al., Nat. Immunol. 22, 2-6 (2021)]. Innate immune cells, however, do not exclusively differentiate between foreign and self but also react to host-derived molecules referred to as alarmins. Extracellular "labile" heme, released during infections, is a bona fide alarmin promoting myeloid cell activation [M. P. Soares, M. T. Bozza, Curr. Opin. Immunol. 38, 94-100 (2016)]. Here, we report that labile heme is a previously unrecognized inducer of trained immunity that confers long-term regulation of lineage specification of hematopoietic stem cells and progenitor cells. In contrast to previous reports on trained immunity, essentially mediated by pathogen-associated molecular patterns, heme training depends on spleen tyrosine kinase signal transduction pathway acting upstream of c-Jun N-terminal kinases. Heme training promotes resistance to sepsis, is associated with the expansion of self-renewing hematopoetic stem cells primed toward myelopoiesis and to the occurrence of a specific myeloid cell population. This is potentially evoked by sustained activity of Nfix, Runx1, and Nfe2l2 and dissociation of the transcriptional repressor Bach2. Previously reported trained immunity inducers are, however, infrequently present in the host, whereas heme abundantly occurs during noninfectious and infectious disease. This difference might explain the vanishing protection exerted by heme training in sepsis over time with sustained long-term myeloid adaptations. Hence, we propose that trained immunity is an integral component of innate immunity with distinct functional differences on infectious disease outcome depending on its induction by pathogenic or endogenous molecules.


Assuntos
Epigênese Genética , Heme/fisiologia , Imunidade Inata , Mielopoese , Animais , Humanos , Camundongos
2.
PLoS Pathog ; 17(3): e1009473, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33770141

RESUMO

Hydrogen sulfide (H2S) has recently been recognized as a novel gaseous transmitter with several anti-inflammatory properties. The role of host- derived H2S in infections by Pseudomonas aeruginosa was investigated in clinical and mouse models. H2S concentrations and survival was assessed in septic patients with lung infection. Animal experiments using a model of severe systemic multidrug-resistant P. aeruginosa infection were performed using mice with a constitutive knock-out of cystathionine-γ lyase (Cse) gene (Cse-/-) and wild-type mice with a physiological expression (Cse+/+). Experiments were repeated in mice after a) treatment with cyclophosphamide; b) bone marrow transplantation (BMT) from a Cse+/+ donor; c) treatment with H2S synthesis inhibitor aminooxyacetic acid (ΑΟΑΑ) or propargylglycine (PAG) and d) H2S donor sodium thiosulfate (STS) or GYY3147. Bacterial loads and myeloperoxidase activity were measured in tissue samples. The expression of quorum sensing genes (QS) was determined in vivo and in vitro. Cytokine concentration was measured in serum and incubated splenocytes. Patients survivors at day 28 had significantly higher serum H2S compared to non-survivors. A cut- off point of 5.3 µΜ discriminated survivors with sensitivity 92.3%. Mortality after 28 days was 30.9% and 93.7% in patients with H2S higher and less than 5.3 µΜ (p = 7 x 10-6). In mice expression of Cse and application of STS afforded protection against infection with multidrug-resistant P. aeruginosa. Cyclophosphamide pretreatment eliminated the survival benefit of Cse+/+ mice, whereas BMT increased the survival of Cse-/- mice. Cse-/- mice had increased pathogen loads compared to Cse+/+ mice. Phagocytic activity of leukocytes from Cse-/- mice was reduced but was restored after H2S supplementation. An H2S dependent down- regulation of quorum sensing genes of P.aeruginosa could be demonstrated in vivo and in vitro. Endogenous H2S is a potential independent parameter correlating with the outcome of P. aeruginosa. H2S provides resistance to infection by MDR bacterial pathogens.


Assuntos
Cistationina gama-Liase/metabolismo , Sulfeto de Hidrogênio/metabolismo , Infecções por Pseudomonas/metabolismo , Sepse/metabolismo , Animais , Humanos , Camundongos , Camundongos Knockout , Infecções por Pseudomonas/complicações , Pseudomonas aeruginosa , Sepse/microbiologia
3.
Clin Transl Immunology ; 10(2): e1253, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33708384

RESUMO

OBJECTIVES: Histone methyltransferase G9a, also known as Euchromatic Histone Lysine Methyltransferase 2 (EHMT2), mediates H3K9 methylation which is associated with transcriptional repression. It possesses immunomodulatory effects and is overexpressed in multiple types of cancer. In this study, we investigated the role of G9a in the induction of trained immunity, a de facto innate immune memory, and its effects in non-muscle-invasive bladder cancer (NMIBC) patients treated with intravesical Bacillus Calmette-Guérin (BCG). METHODS: EHMT2 expression was assessed upon induction of trained immunity by RNA sequencing and Western blotting. G9a inhibitor BIX-01294 was used to investigate the effect on trained immunity responses in vitro. Subsequent cytokine production was measured by ELISA, epigenetic modifications were measured by ChIP-qPCR, Seahorse technology was used to measure metabolic changes, and a luminescence assay was used to measure ROS release. RNA sequencing was performed on BIX-01294-treated monocytes ex vivo. RESULTS: The expression of EHMT2 mRNA and protein decreased in monocytes during induction of trained immunity. G9a inhibition by BIX-01294 induced trained immunity and amplified trained immunity responses evoked by various microbial ligands in vitro. This was accompanied by decreased H3K9me2 at the promoters of pro-inflammatory genes. G9a inhibition was also associated with amplified ex vivo trained immunity responses in circulating monocytes of NMIBC patients. Additionally, altered RNA expression of inflammatory genes in monocytes of NMIBC patients was observed upon ex vivo G9a inhibition. Furthermore, intravesical BCG therapy decreased H3K9me2 at the promoter of pro-inflammatory genes. CONCLUSION: Inhibition of G9a is important in the induction of trained immunity, and G9a may represent a novel therapeutic target in NMIBC patients.

4.
Crit Care Med ; 45(8): e821-e830, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28430696

RESUMO

OBJECTIVES: To characterize the temporal pattern of a panel of blood and urinary biomarkers in an animal model of fecal peritonitis and recovery. DESIGN: Prospective observational animal study. SETTING: University research laboratory. SUBJECTS: Male Wistar rats. INTERVENTIONS: A fluid-resuscitated, long-term (3 d) rat model of sepsis (fecal peritonitis) and recovery was used to understand the temporal association of sepsis biomarkers in relation to systemic hemodynamics, inflammation, and renal function. At predefined time points (3, 6, 12, 24, 48, 72 hr), animals (≥ 6 per group) underwent echocardiography, blood and urine sampling, and had kidneys taken for histological analysis. Comparison was made against sham-operated controls and naïve animals. MEASUREMENTS AND MAIN RESULTS: The systemic proinflammatory response was maximal at 6 hours, corresponding with the nadir of stroke volume. Serum creatinine peaked late (24 hr), when clinical recovery was imminent. Histological evidence of tubular injury and cell death was minimal. After a recovery period, all biomarkers returned to levels approaching those observed in sham animals. Apart from urine clusterin and interleukin-18, all other urinary biomarkers were elevated at earlier time points compared with serum creatinine. Urine neutrophil gelatinase-associated lipocalin was the most sensitive marker among those studied, rising from 3 hours. While serum creatinine fell at 12 hours, serum cystatin C increased, suggestive of decreased creatinine production. CONCLUSIONS: Novel information is reported on the temporal profile of a panel of renal biomarkers in sepsis in the context of systemic and renal inflammation and recovery. Insight into the pathophysiology of acute kidney injury is gleaned from the temporal change markers of renal injury (urine neutrophil gelatinase-associated lipocalin, kidney injury molecule-1, calbindin), followed by a marker of cell cycle arrest (urine insulin-like growth factor-binding protein 7) and, finally, by functional markers of filtration (serum creatinine and cystatin C). These clinically relevant findings should have significant influence on future clinical testing.


Assuntos
Sepse/fisiopatologia , Animais , Biomarcadores , Moléculas de Adesão Celular/urina , Cistatina C/sangue , Modelos Animais de Doenças , Hemodinâmica , Mediadores da Inflamação/metabolismo , Testes de Função Renal , Lipocalina-2/urina , Lipocalinas/urina , Masculino , Estudos Prospectivos , Ratos , Ratos Wistar , Sepse/sangue , Sepse/urina , Fatores de Tempo
5.
PLoS One ; 12(4): e0176204, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28445535

RESUMO

BACKGROUND: Legionella pneumophila (L. pneumophila) is a causative agent of severe pneumonia. It is highly adapted to intracellular replication and manipulates host cell functions like vesicle trafficking and mRNA translation to its own advantage. However, it is still unknown to what extent microRNAs (miRNAs) are involved in the Legionella-host cell interaction. METHODS: WT and MyD88-/- murine bone marrow-derived macrophages (BMM) were infected with L. pneumophila, the transcriptome was analyzed by high throughput qPCR array (microRNAs) and conventional qPCR (mRNAs), and mRNA-miRNA interaction was validated by luciferase assays with 3´-UTR mutations and western blot. RESULTS: L. pneumophila infection caused a pro-inflammatory reaction and significant miRNA changes in murine macrophages. In MyD88-/- cells, induction of inflammatory markers, such as Ccxl1/Kc, Il6 and miR-146a-5p was reduced. Induction of miR-125a-3p was completely abrogated in MyD88-/- cells. Target prediction analyses revealed N-terminal asparagine amidase 1 (NTAN1), a factor from the n-end rule pathway, to be a putative target of miR-125a-3p. This interaction could be confirmed by luciferase assay and western blot. CONCLUSION: Taken together, we characterized the miRNA regulation in L. pneumophila infection with regard to MyD88 signaling and identified NTAN1 as a target of miR-125a-3p. This finding unravels a yet unknown feature of Legionella-host cell interaction, potentially relevant for new treatment options.


Assuntos
Amidoidrolases/metabolismo , Legionella pneumophila/fisiologia , MicroRNAs/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Regiões 3' não Traduzidas , Amidoidrolases/antagonistas & inibidores , Amidoidrolases/genética , Animais , Sequência de Bases , Quimiocina CXCL1/análise , Genótipo , Interleucina-6/análise , Interleucina-6/genética , Interleucina-6/metabolismo , Doença dos Legionários/genética , Doença dos Legionários/patologia , Macrófagos/citologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos , Camundongos Knockout , MicroRNAs/genética , Fator 88 de Diferenciação Mieloide/deficiência , Células RAW 264.7 , Alinhamento de Sequência , Transdução de Sinais , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA