Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 41(8): 111626, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36417870

RESUMO

Jagged1 (JAG1) is a Notch ligand that contact-dependently activates Notch receptors and regulates cancer progression. The JAG1 intracellular domain (JICD1) is generated from JAG1, like formation of the NOTCH1 intracellular domain (NICD1); however, the role of JICD1 in tumorigenicity has not been comprehensively elucidated. Here we show that JICD1 induces astrocytes to acquire several cancer stem cell properties, including tumor formation, invasiveness, stemness, and resistance to anticancer therapy. The transcriptome, chromatin immunoprecipitation sequencing (ChIP-seq), and proteomics analyses show that JICD1 increases SOX2 expression by forming a transcriptional complex with DDX17, SMAD3, and TGIF2. JICD1-driven tumorigenicity is directly regulated by SOX2. Our results demonstrate that, like NICD1, JICD1 acts as a transcriptional cofactor in formation of the DDX17/SMAD3/TGIF2 transcriptional complex, leading to oncogenic transformation.


Assuntos
Receptores Notch , Transdução de Sinais , Transdução de Sinais/fisiologia , Receptores Notch/metabolismo , Oncogenes , Células-Tronco Neoplásicas/metabolismo , Ligação Proteica
2.
Cells ; 11(13)2022 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-35805116

RESUMO

The oncogenic role of nuclear LIM domain only 2 (LMO2) as a transcriptional regulator is well established, but its function in the cytoplasm is largely unknown. Here, we identified LMO2 as a cytoplasmic activator for signal transducer and activator of transcription 3 (STAT3) signaling in glioma stem cells (GSCs) through biochemical and bioinformatics analyses. LMO2 increases STAT3 phosphorylation by interacting with glycoprotein 130 (gp130) and Janus kinases (JAKs). LMO2-driven activation of STAT3 signaling requires the LDB1 protein and leads to increased expression of an inhibitor of differentiation 1 (ID1), a master regulator of cancer stemness. Our findings indicate that the cytoplasmic LMO2-LDB1 complex plays a crucial role in the activation of the GSC signaling cascade via interaction with gp130 and JAK1/2. Thus, LMO2-LDB1 is a bona fide oncogenic protein complex that activates either the JAK-STAT signaling cascade in the cytoplasm or direct transcriptional regulation in the nucleus.


Assuntos
Glioma , Fator de Transcrição STAT3 , Proteínas Adaptadoras de Transdução de Sinal , Receptor gp130 de Citocina/metabolismo , Citoplasma/metabolismo , Proteínas de Ligação a DNA/metabolismo , Glioma/genética , Glioma/metabolismo , Glicoproteínas/metabolismo , Humanos , Janus Quinases/metabolismo , Proteínas com Domínio LIM/genética , Proteínas com Domínio LIM/metabolismo , Proteínas com Homeodomínio LIM/metabolismo , Células-Tronco Neoplásicas/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Fator de Transcrição STAT3/metabolismo , Fatores de Transcrição/metabolismo
3.
Biotechnol J ; 17(7): e2100434, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35233982

RESUMO

Alternative cancer models that are close to humans are required to create more valuable preclinical results during oncology studies. Here, a new onco-pig model via developing a CRISPR-Cas9-based Conditional Polycistronic gene expression Cassette (CRI-CPC) system to control the tumor inducing simian virus 40 large T antigen (SV40LT) and oncogenic HRASG12V . After conducting somatic cell nuclear transfer (SCNT), transgenic embryos were transplanted into surrogate mothers and five male piglets were born. Umbilical cord analysis confirmed that all piglets were transgenic. Two of them survived and they expressed a detectable green fluorescence. The test was made whether CRI-CPC models were naturally fertile and whether the CRI-CPC system was stably transferred to the offspring. By mating with a normal female pig, four offspring piglets were successfully produced. Among them, only three male piglets were transgenic. Finally, their applicability was tested as cancer models after transduction of Cas9 into fibroblasts from each CRI-CPC pig in vitro, resulting in cell acquisition of cancerous characteristics via the induction of oncogene expression. These results showed that our new CRISPR-Cas9-based onco-pig model was successfully developed.


Assuntos
Sistemas CRISPR-Cas , Técnicas de Transferência Nuclear , Animais , Animais Geneticamente Modificados , Sistemas CRISPR-Cas/genética , Feminino , Fibroblastos/metabolismo , Técnicas de Inativação de Genes , Humanos , Masculino , Oncogenes , Suínos/genética
4.
Antibiotics (Basel) ; 10(5)2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-34068711

RESUMO

Pseudomonas syringae pv. actinidiae (Psa) is a Gram-negative bacterium that causes bacterial canker disease in kiwifruit. Copper or antibiotics have been used in orchards to control this disease, but the recent emergence of antibiotic-resistant Psa has called for the development of a new control agent. We previously reported that the bacteriophage (or phage) PPPL-1 showed antibacterial activity for both biovar 2 and 3 of Psa. To investigate the possibility of PPPL-1 to control bacterial canker in kiwifruit, we further tested the efficacy of PPPL-1 and its phage cocktail with two other phages on suppressing disease development under greenhouse conditions using 6 weeks old kiwifruit plants. Our results showed that the disease control efficacy of PPPL-1 treatment was statistically similar to those of phage cocktail treatment or AgrimycinTM, which contains streptomycin and oxytetracycline antibiotics as active ingredients. Moreover, PPPL-1 could successfully kill streptomycin-resistant Psa isolates, of which the treatment of BuramycinTM carrying only streptomycin as an active ingredient had no effect in vitro. The phage PPPL-1 was further characterized, and stability assays showed that the phage was stable in the field soil and at low temperature of 0 ± 2 °C. In addition, the phage could be scaled up quickly up to 1010 pfu/mL at 12 h later from initial multiplicity of infection of 0.000005. Our results indicate that PPPL-1 phage is a useful candidate as a biocontrol agent and could be a tool to control the bacterial canker in kiwifruit by Psa infection in the field conditions.

5.
Cell Death Dis ; 11(5): 359, 2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32398756

RESUMO

Various stresses, including oxidative stress, impair the proliferative capacity of muscle stem cells leading to declined muscle regeneration related to aging or muscle diseases. ZNF746 (PARIS) is originally identified as a substrate of E3 ligase Parkin and its accumulation is associated with Parkinson's disease. In this study, we investigated the role of PARIS in myoblast function. PARIS is expressed in myoblasts and decreased during differentiation. PARIS overexpression decreased both proliferation and differentiation of myoblasts without inducing cell death, whereas PARIS depletion enhanced myoblast differentiation. Interestingly, high levels of PARIS in myoblasts or fibroblasts induced cellular senescence with alterations in gene expression associated with p53 signaling, inflammation, and response to oxidative stress. PARIS overexpression in myoblasts starkly enhanced oxidative stress and the treatment of an antioxidant Trolox attenuated the impaired proliferation caused by PARIS overexpression. FoxO1 and p53 proteins are elevated in PARIS-overexpressing cells leading to p21 induction and the depletion of FoxO1 or p53 reduced p21 levels induced by PARIS overexpression. Furthermore, both PARIS and FoxO1 were recruited to p21 promoter region and Trolox treatment attenuated FoxO1 recruitment. Taken together, PARIS upregulation causes oxidative stress-related FoxO1 and p53 activation leading to p21 induction and cellular senescence of myoblasts.


Assuntos
Proteína Forkhead Box O1/metabolismo , Mioblastos/metabolismo , Estresse Oxidativo/fisiologia , Proteínas Repressoras/metabolismo , Envelhecimento/fisiologia , Animais , Antioxidantes/metabolismo , Diferenciação Celular/genética , Senescência Celular/fisiologia , Humanos , Camundongos , Proteína Supressora de Tumor p53/metabolismo
6.
J Cachexia Sarcopenia Muscle ; 11(4): 1089-1103, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32103583

RESUMO

BACKGROUND: Perturbation in cell adhesion and growth factor signalling in satellite cells results in decreased muscle regenerative capacity. Cdon (also called Cdo) is a component of cell adhesion complexes implicated in myogenic differentiation, but its role in muscle regeneration remains to be determined. METHODS: We generated inducible satellite cell-specific Cdon ablation in mice by utilizing a conditional Cdon allele and Pax7 CreERT2 . To induce Cdon ablation, mice were intraperitoneally injected with tamoxifen (tmx). Using cardiotoxin-induced muscle injury, the effect of Cdon depletion on satellite cell function was examined by histochemistry, immunostaining, and 5-ethynyl-2'-deoxyuridine (EdU) incorporation assay. Isolated myofibers or myoblasts were utilized to determine stem cell function and senescence. To determine pathways related to Cdon deletion, injured muscles were subjected to RNA sequencing analysis. RESULTS: Satellite cell-specific Cdon ablation causes impaired muscle regeneration with fibrosis, likely attributable to decreased proliferation, and senescence, of satellite cells. Cultured Cdon-depleted myofibers exhibited 32 ± 9.6% of EdU-positive satellite cells compared with 58 ± 4.4% satellite cells in control myofibers (P < 0.05). About 32.5 ± 3.7% Cdon-ablated myoblasts were positive for senescence-associated ß-galactosidase (SA-ß-gal) while only 3.6 ± 0.5% of control satellite cells were positive (P < 0.001). Transcriptome analysis of muscles at post-injury Day 4 revealed alterations in genes related to mitogen-activated protein kinase signalling (P < 8.29 e-5 ) and extracellular matrix (P < 2.65 e-24 ). Consistent with this, Cdon-depleted tibialis anterior muscles had reduced phosphorylated extracellular signal-regulated kinase (p-ERK) protein levels and expression of ERK targets, such as Fos (0.23-fold) and Egr1 (0.31-fold), relative to mock-treated control muscles (P < 0.001). Cdon-depleted myoblasts exhibited impaired ERK activation in response to basic fibroblast growth factor. Cdon ablation resulted in decreased and/or mislocalized integrin ß1 activation in satellite cells (weak or mislocalized integrin1 in tmx = 38.7 ± 1.9%, mock = 21.5 ± 6%, P < 0.05), previously linked with reduced fibroblast growth factor (FGF) responsiveness in aged satellite cells. In mechanistic studies, Cdon interacted with and regulated cell surface localization of FGFR1 and FGFR4, likely contributing to FGF responsiveness of satellite cells. Satellite cells from a progeria model, Zmpste24-/- myofibers, showed decreased Cdon levels (Cdon-positive cells in Zmpste24-/- = 63.3 ± 11%, wild type = 90 ± 7.7%, P < 0.05) and integrin ß1 activation (weak or mislocalized integrin ß1 in Zmpste24-/- = 64 ± 6.9%, wild type = 17.4 ± 5.9%, P < 0.01). CONCLUSIONS: Cdon deficiency in satellite cells causes impaired proliferation of satellite cells and muscle regeneration via aberrant integrin and FGFR signalling.


Assuntos
Moléculas de Adesão Celular/metabolismo , Músculo Esquelético/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Células Satélites de Músculo Esquelético/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Diferenciação Celular , Humanos , Camundongos , Regeneração , Transdução de Sinais
7.
J Cachexia Sarcopenia Muscle ; 11(4): 1070-1088, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32096917

RESUMO

BACKGROUND: Muscle wasting, resulting from aging or pathological conditions, leads to reduced quality of life, increased morbidity, and increased mortality. Much research effort has been focused on the development of exercise mimetics to prevent muscle atrophy and weakness. In this study, we identified indoprofen from a screen for peroxisome proliferator-activated receptor γ coactivator α (PGC-1α) inducers and report its potential as a drug for muscle wasting. METHODS: The effects of indoprofen treatment on dexamethasone-induced atrophy in mice and in 3-phosphoinositide-dependent protein kinase-1 (PDK1)-deleted C2C12 myotubes were evaluated by immunoblotting to determine the expression levels of myosin heavy chain and anabolic-related and oxidative metabolism-related proteins. Young, old, and disuse-induced muscle atrophic mice were administered indoprofen (2 mg/kg body weight) by gavage. Body weight, muscle weight, grip strength, isometric force, and muscle histology were assessed. The expression levels of muscle mass-related and function-related proteins were analysed by immunoblotting or immunostaining. RESULTS: In young (3-month-old) and aged (22-month-old) mice, indoprofen treatment activated oxidative metabolism-related enzymes and led to increased muscle mass. Mechanistic analysis using animal models and muscle cells revealed that indoprofen treatment induced the sequential activation of AKT/p70S6 kinase (S6K) and AMP-activated protein kinase (AMPK), which in turn can augment protein synthesis and PGC-1α induction, respectively. Structural prediction analysis identified PDK1 as a target of indoprofen and, indeed, short-term treatment with indoprofen activated the PDK1/AKT/S6K pathway in muscle cells. Consistent with this finding, PDK1 inhibition abrogated indoprofen-induced AKT/S6K activation and hypertrophic response. CONCLUSIONS: Our findings demonstrate the effects of indoprofen in boosting skeletal muscle mass through the sequential activation of PDK1/AKT/S6K and AMPK/PGC-1α. Taken together, our results suggest that indoprofen represents a potential drug to prevent muscle wasting and weakness related to aging or muscle diseases.


Assuntos
Inibidores de Ciclo-Oxigenase/uso terapêutico , Indoprofen/uso terapêutico , Atrofia Muscular/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Inibidores de Ciclo-Oxigenase/farmacologia , Humanos , Indoprofen/farmacologia , Masculino , Camundongos
8.
Autophagy ; 15(6): 1069-1081, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30653406

RESUMO

Protein arginine methyltransferases (PRMTs) have emerged as important regulators of skeletal muscle metabolism and regeneration. However, the direct roles of the various PRMTs during skeletal muscle remodeling remain unclear. Using skeletal muscle-specific prmt1 knockout mice, we examined the function and downstream targets of PRMT1 in muscle homeostasis. We found that muscle-specific PRMT1 deficiency led to muscle atrophy. PRMT1-deficient muscles exhibited enhanced expression of a macroautophagic/autophagic marker LC3-II, FOXO3 and muscle-specific ubiquitin ligases, TRIM63/MURF-1 and FBXO32, likely contributing to muscle atrophy. The mechanistic study reveals that PRMT1 regulates FOXO3 through PRMT6 modulation. In the absence of PRMT1, increased PRMT6 specifically methylates FOXO3 at arginine 188 and 249, leading to its activation. Finally, we demonstrate that PRMT1 deficiency triggers FOXO3 hyperactivation, which is abrogated by PRMT6 depletion. Taken together, PRMT1 is a key regulator for the PRMT6-FOXO3 axis in the control of autophagy and protein degradation underlying muscle maintenance. Abbreviations: Ad-RNAi: adenovirus-delivered small interfering RNA; AKT: thymoma viral proto-oncogene; AMPK: AMP-activated protein kinase; Baf A1: bafilomycin A1; CSA: cross-sectional area; EDL: extensor digitorum longus; FBXO32: F-box protein 32; FOXO: forkhead box O; GAS: gatrocnemieus; HDAC: histone deacetylase; IGF: insulin-like growth factor; LAMP: lysosomal-associated membrane protein; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; mKO: Mice with skeletal muscle-specific deletion of Prmt1; MTOR: mechanistic target of rapamycin kinase; MYH: myosin heavy chain; MYL1/MLC1f: myosin, light polypeptide 1; PRMT: protein arginine N-methyltransferase; sgRNA: single guide RNA; SQSTM1: sequestosome 1; SOL: soleus; TA: tibialis anterior; TRIM63/MURF-1: tripartite motif-containing 63; YY1: YY1 transcription factor.


Assuntos
Autofagia/genética , Proteína Forkhead Box O3/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Animais , Proteína Forkhead Box O3/química , Proteína Forkhead Box O3/genética , Células HEK293 , Histona Desacetilase 2/metabolismo , Histona Desacetilases/metabolismo , Humanos , Metilação , Camundongos , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/patologia , Fosforilação , Proto-Oncogene Mas , Transdução de Sinais/genética , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Fator de Transcrição YY1/metabolismo
9.
Cell Death Dis ; 7(10): e2431, 2016 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-27763641

RESUMO

Skeletal myogenesis is coordinated by multiple signaling pathways that control cell adhesion/migration, survival and differentiation accompanied by muscle-specific gene expression. A cell surface protein Cdo is involved in cell contact-mediated promyogenic signals through activation of p38MAPK and AKT. Protein kinase C-related kinase 2 (PKN2/PRK2) is implicated in regulation of various biological processes, including cell migration, adhesion and death. It has been shown to interact with and inhibit AKT thereby inducing cell death. This led us to investigate the role of PKN2 in skeletal myogenesis and the crosstalk between PKN2 and Cdo. Like Cdo, PKN2 was upregulated in C2C12 myoblasts during differentiation and decreased in cells with Cdo depletion caused by shRNA or cultured on integrin-independent substratum. This decline of PKN2 levels resulted in diminished AKT activation during myoblast differentiation. Consistently, PKN2 overexpression-enhanced C2C12 myoblast differentiation, whereas PKN2-depletion impaired it, without affecting cell survival. PKN2 formed complexes with Cdo, APPL1 and AKT via its C-terminal region and this interaction appeared to be important for induction of AKT activity as well as myoblast differentiation. Furthermore, PKN2-enhanced MyoD-responsive reporter activities by mediating the recruitment of BAF60c and MyoD to the myogenin promoter. Taken together, PKN2 has a critical role in cell adhesion-mediated AKT activation during myoblast differentiation.


Assuntos
Moléculas de Adesão Celular/metabolismo , Diferenciação Celular , Mioblastos/citologia , Mioblastos/metabolismo , Proteína Quinase C/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Linhagem Celular , Ativação Enzimática , Genes Reporter , Camundongos , Proteína MyoD/metabolismo , Ligação Proteica , Proteína Quinase C/química , Técnicas do Sistema de Duplo-Híbrido , Regulação para Cima
10.
Food Sci Biotechnol ; 25(1): 179-184, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-30263255

RESUMO

Extraction conditions for extraction yield (Y 1 ), total phenolic content (TPC, Y 2 ), and inhibition rate in human gastric carcinoma cells (Y 3 ) were optimized using response surface methodology for fermented Rhus verniciflua stokes (FRV). Optimal extraction conditions for effective use of FRV as a biofunctional material in food and pharmaceutical industries were investigated. Independent variables were extraction temperature (X 1 =25-105°C), extraction time (X 2 =4-20 h), and the solvent to solid ratio (X 3 =10-30 mL/g). A second order polynomial model satisfactorily fitted experimental data with coefficient of determination (R 2 ) values of 0.9613, 0.9851, and 0.8038, respectively, for Y 1 , Y 2 , and Y 3 . Optimal conditions for the highest extraction yield of 2.37%, a total phenol content (TPC) value of 113.75 mg of tannic acid equivalents (TAE)/g, and an inhibition rate of 72.61% were derived at X 1 =89.95°C, X 2 =9.25 h, and X 3 =25 mL/g.

11.
Skelet Muscle ; 5: 28, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26347807

RESUMO

BACKGROUND: Syntaxins are a family of membrane proteins involved in vesicle trafficking, such as synaptic vesicle exocytosis. Syntaxin 4 (Stx4) is expressed highly in skeletal muscle and plays a critical role in insulin-stimulated glucose uptake by promoting translocation of glucose transporter 4 (GLUT4) to the cell surface. A cell surface receptor cell adhesion molecule-related, down-regulated by oncogenes (Cdo) is a component of cell adhesion complexes and promotes myoblast differentiation via activation of key signalings, including p38MAPK and AKT. In this study, we investigate the function of Stx4 in myoblast differentiation and the crosstalk between Stx4 and Cdo in myoblast differentiation. METHODS: The effects of overexpression or shRNA-based depletion of Stx4 and Cdo genes on C2C12 myoblast differentiation are assessed by Western blotting and immunofluorescence approaches. The interaction between Cdo and Stx4 and the responsible domain mapping are assessed by coimmunoprecipitation or pulldown assays. The effect of Stx4 depletion on cell surface localization of Cdo and GLUT4 in C2C12 myoblasts is assessed by surface biotinylation and Western blotting. RESULTS: Overexpression or knockdown of Stx4 enhances or inhibits myogenic differentiation, respectively. Stx4 binds to the cytoplasmic tail of Cdo, and this interaction seems to be critical for induction of p38MAPK activation and myotube formation. Stx4 depletion decreases specifically the cell surface localization of Cdo without changes in surface N-Cadherin levels. Interestingly, Cdo depletion reduces the level of GLUT4 and Stx4 at cell surface. Consistently, overexpression of Cdo in C2C12 myoblasts generally increases glucose uptake, while Cdo depletion reduces it. CONCLUSIONS: Stx4 promotes myoblast differentiation through interaction with Cdo and stimulation of its surface translocation. Both Cdo and Stx4 are required for GLUT4 translocation to cell surface and glucose uptake in myoblast differentiation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA