Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Vet Sci ; 11: 1388339, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38952802

RESUMO

Background: Natural cases of prion disease have not been reported in rabbits, and prior attempts to identify a prion conversion agent have been unsuccessful. However, recent applications of prion seed amplifying experimental techniques have sparked renewed interest in the potential susceptibility of rabbits to prion disease infections. Among several factors related to prion disease, polymorphisms within the prion-like protein gene (PRND), a member of the prion protein family, have been reported as significantly associated with disease susceptibility in various species. Therefore, our study aimed to investigate polymorphisms in the PRND gene of rabbits and analyze their genetic characteristics. Methods: Genomic DNA was extracted from 207 rabbit samples to investigate leporine PRND polymorphisms. Subsequently, amplicon sequencing targeting the coding region of the leporine PRND gene was conducted. Additionally, linkage disequilibrium (LD) analysis was employed to assess the connection within and between loci. The impact of non-synonymous single nucleotide polymorphisms (SNPs) on the Doppel protein was evaluated using PolyPhen-2. Results: We found nine novel SNPs in the leporine PRND gene: c.18A > G, c.76G > C, c.128C > T, c.146C > T, c.315A > G, c.488G > A, c.525G > C, c.544G > A, and c.579A > G. Notably, seven of these PRND SNPs, excluding c.525G > C and c.579A > G, exhibited strong LD values exceeding 0.3. In addition, LD analysis confirmed a robust link between PRNP SNP c.234C > T and PRND SNPs at c.525G > C and c.579A > G. Furthermore, according to PolyPhen-2 and SIFT analyses, the four non-synonymous SNPs were predicted to have deleterious effects on the function or structure of the Doppel protein. However, PANTHER and Missense3D did not indicate such effects. Conclusion: In this paper, we have identified novel SNPs in the rabbit PRND gene and predicted their potential detrimental effects on protein function or structure through four non-synonymous SNPs. Additionally, we observed a genetic linkage between SNPs in the PRND and PRNP genes. These findings may provide insights into understanding the characteristics of rabbits as partially resistant species. To the best of our knowledge, this study is the first to genetically characterize PRND SNPs in rabbits.

2.
Vet Res ; 54(1): 48, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37328789

RESUMO

Prion diseases are fatal and malignant infectious encephalopathies induced by the pathogenic form of prion protein (PrPSc) originating from benign prion protein (PrPC). A previous study reported that the M132L single nucleotide polymorphism (SNP) of the prion protein gene (PRNP) is associated with susceptibility to chronic wasting disease (CWD) in elk. However, a recent meta-analysis integrated previous studies that did not find an association between the M132L SNP and susceptibility to CWD. Thus, there is controversy about the effect of M132L SNP on susceptibility to CWD. In the present study, we investigated novel risk factors for CWD in elk. We investigated genetic polymorphisms of the PRNP gene by amplicon sequencing and compared genotype, allele, and haplotype frequencies between CWD-positive and CWD-negative elk. In addition, we performed a linkage disequilibrium (LD) analysis by the Haploview version 4.2 program. Furthermore, we evaluated the 3D structure and electrostatic potential of elk prion protein (PrP) according to the S100G SNP using AlphaFold and the Swiss-PdbViewer 4.1 program. Finally, we analyzed the free energy change of elk PrP according to the S100G SNP using I-mutant 3.0 and CUPSAT. We identified 23 novel SNP of the elk PRNP gene in 248 elk. We found a strong association between PRNP SNP and susceptibility to CWD in elk. Among those SNP, S100G is the only non-synonymous SNP. We identified that S100G is predicted to change the electrostatic potential and free energy of elk PrP. To the best of our knowledge, this was the first report of a novel risk factor, the S100G SNP, for CWD.


Assuntos
Cervos , Príons , Doença de Emaciação Crônica , Animais , Proteínas Priônicas/genética , Proteínas Priônicas/metabolismo , Príons/genética , Doença de Emaciação Crônica/genética , Doença de Emaciação Crônica/patologia , Polimorfismo de Nucleotídeo Único , Cervos/genética , Fatores de Risco
3.
Transbound Emerg Dis ; 69(5): e2073-e2083, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35349210

RESUMO

Prion diseases are incurable neurodegenerative disorders caused by proteinase K-resistant prion protein (PrPSc ) derived from normal prion protein (PrPC ) encoded by the prion protein gene (PRNP). Although the cervid PRNP gene plays a pivotal role in the pathological mechanism of chronic wasting disease (CWD), there is no existing association analysis between susceptibility to CWD and genetic polymorphisms of the PRNP gene in sika deer. We investigated genetic polymorphisms of the PRNP gene using amplicon sequencing in sika deer. In addition, to identify a genetic susceptibility factor, we compared the genotype, allele and haplotype frequencies of the PRNP gene between CWD-positive and CWD-negative sika deer. Furthermore, to assess the effect of the genetic polymorphisms on sika deer prion protein (PrP), we performed in silico analysis using PolyPhen-2, PROVEAN and AMYCO. Finally, we analysed the tertiary structure and electrostatic potential of sika deer PrP based on single nucleotide polymorphisms (SNPs) using the SWISS-MODEL and Swiss-PdbViewer programs. We found a total of 24 SNPs of the PRNP gene, including 22 novel SNPs (10 synonymous SNPs and 12 nonsynonymous SNPs), in sika deer. Among the nonsynonymous SNPs, we found a strong association of susceptibility to CWD with c.56G > A (Ser19Asn). In addition, we found that c.56G > A (Ser19Asn), c.296A > T (His99Leu) and c.560T > A (Val187Asp) were predicted to have damaging effects on sika deer PrP. Furthermore, we observed significant alterations in the electrostatic potential of sika deer PrP by genetic polymorphisms of the 187Asp allele. To the best of our knowledge, this was the first association study between genetic polymorphisms of the PRNP gene and susceptibility to CWD in sika deer.


Assuntos
Cervos , Príons , Doença de Emaciação Crônica , Animais , Cervos/genética , Endopeptidase K/genética , Polimorfismo de Nucleotídeo Único/genética , Proteínas Priônicas/genética , Príons/genética , Doença de Emaciação Crônica/genética
4.
Genes (Basel) ; 12(11)2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34828268

RESUMO

Interferon-induced transmembrane protein 3 (IFITM3), a crucial effector of the host's innate immune system, prohibits an extensive range of viruses. Previous studies have reported that single nucleotide polymorphisms (SNPs) of the IFITM3 gene are associated with the expression level and length of the IFITM3 protein and can impact susceptibility to infectious viruses and the severity of infection with these viruses. However, there have been no studies on polymorphisms of the bovine IFITM3 gene. In the present study, we finely mapped the bovine IFITM3 gene and annotated the identified polymorphisms. We investigated polymorphisms of the bovine IFITM3 gene in 108 Hanwoo and 113 Holstein cattle using direct sequencing and analyzed genotype, allele, and haplotype frequencies and linkage disequilibrium (LD) between the IFITM3 genes of the two cattle breeds. In addition, we analyzed transcription factor-binding sites and transcriptional capacity using PROMO and luciferase assays, respectively. Furthermore, we analyzed the effect of a nonsynonymous SNP of the IFITM3 gene using PolyPhen-2, PANTHER, and PROVEAN. We identified 23 polymorphisms in the bovine IFITM3 gene and found significantly different genotype, allele, and haplotype frequency distributions and LD scores between polymorphisms of the bovine IFITM3 gene in Hanwoo and Holstein cattle. In addition, the ability to bind the transcription factor Nkx2-1 and transcriptional capacities were significantly different depending on the c.-193T > C allele. Furthermore, nonsynonymous SNP (F121L) was predicted to be benign. To the best of our knowledge, this is the first genetic study of bovine IFITM3 polymorphisms.


Assuntos
Bovinos/genética , Proteínas de Membrana/genética , Sequências Reguladoras de Ácido Nucleico/genética , Animais , Células Cultivadas , Regulação da Expressão Gênica , Frequência do Gene , Genótipo , Haplótipos , Interferons/metabolismo , Desequilíbrio de Ligação , Polimorfismo de Nucleotídeo Único , Especificidade da Espécie , Fator Nuclear 1 de Tireoide/fisiologia , Ativação Transcricional/genética
5.
PLoS One ; 13(10): e0206209, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30359416

RESUMO

The polymorphisms of the prion protein (PRNP) gene, which encodes normal prion proteins (PrP), are known to be involved in the susceptibility of prion diseases. The prion-like protein (Doppel) gene (PRND) is the paralog of the PRNP gene and is closely located downstream of the PRNP gene. In addition, the polymorphisms of PRND correlate with disease susceptibility in several animals. We analyzed the genotype and allele frequencies of PRND polymorphisms in 246 Korean native black goats and found a total of six single nucleotide polymorphisms (SNPs) with one novel SNP, c.99C>T. We observed linkage disequilibrium (LD) within and between loci. PRND c.28T>C, c.151A>G, and c.385G>C and PRND c.65C>T and c.286G>A were in perfect LD and we have reported for the first time strong LD between PRND and PRNP or prion-related protein gene (PRNT) loci. Specifically, between the PRND c.28T>C, c.151A>G and c.385G>C and the PRNP codon 143, PRND c.99C>T and the PRNP codon 102 or PRND SNPs (c.28T>C, c.151A>G and c.385G>C) and PRNT SNP (c.321T>C). Furthermore, we confirmed that the genotype distribution of the PRNP p.His143Arg was significantly different according to that of the PRND c.28T>C (P < 0.0001). Finally, using PolyPhen-2 and PROVEAN, we predicted that two non-synonymous SNPs, c.65C>T and c.286G>A, in the PRND gene can have a detrimental effect on Doppel. To the best of our knowledge, this is the first report of genetic characteristics of the PRND gene in Korean native black goats.


Assuntos
Doenças das Cabras/genética , Polimorfismo de Nucleotídeo Único , Proteínas Priônicas/genética , Scrapie/genética , Animais , Animais Domésticos/genética , Frequência do Gene , Predisposição Genética para Doença , Genótipo , Cabras/genética , Desequilíbrio de Ligação , República da Coreia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA