Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Metab ; 6(2): 359-377, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38409323

RESUMO

High protein intake is common in western societies and is often promoted as part of a healthy lifestyle; however, amino-acid-mediated mammalian target of rapamycin (mTOR) signalling in macrophages has been implicated in the pathogenesis of ischaemic cardiovascular disease. In a series of clinical studies on male and female participants ( NCT03946774 and NCT03994367 ) that involved graded amounts of protein ingestion together with detailed plasma amino acid analysis and human monocyte/macrophage experiments, we identify leucine as the key activator of mTOR signalling in macrophages. We describe a threshold effect of high protein intake and circulating leucine on monocytes/macrophages wherein only protein in excess of ∼25 g per meal induces mTOR activation and functional effects. By designing specific diets modified in protein and leucine content representative of the intake in the general population, we confirm this threshold effect in mouse models and find ingestion of protein in excess of ∼22% of dietary energy requirements drives atherosclerosis in male mice. These data demonstrate a mechanistic basis for the adverse impact of excessive dietary protein on cardiovascular risk.


Assuntos
Doenças Cardiovasculares , Humanos , Masculino , Feminino , Camundongos , Animais , Leucina/metabolismo , Leucina/farmacologia , Fatores de Risco , Serina-Treonina Quinases TOR/metabolismo , Macrófagos/metabolismo , Fatores de Risco de Doenças Cardíacas , Mamíferos/metabolismo
2.
Circ Res ; 133(3): 200-219, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37350264

RESUMO

BACKGROUND: The mTOR (mechanistic target of rapamycin) pathway is a complex signaling cascade that regulates cellular growth, proliferation, metabolism, and survival. Although activation of mTOR signaling has been linked to atherosclerosis, its direct role in lesion progression and in plaque macrophages remains poorly understood. We previously demonstrated that mTORC1 (mTOR complex 1) activation promotes atherogenesis through inhibition of autophagy and increased apoptosis in macrophages. METHODS: Using macrophage-specific Rictor- and mTOR-deficient mice, we now dissect the distinct functions of mTORC2 pathways in atherogenesis. RESULTS: In contrast to the atheroprotective effect seen with blockade of macrophage mTORC1, macrophage-specific mTORC2-deficient mice exhibit an atherogenic phenotype, with larger, more complex lesions and increased cell death. In cultured macrophages, we show that mTORC2 signaling inhibits the FoxO1 (forkhead box protein O1) transcription factor, leading to suppression of proinflammatory pathways, especially the inflammasome/IL (interleukin)-1ß response, a key mediator of vascular inflammation and atherosclerosis. In addition, administration of FoxO1 inhibitors efficiently rescued the proinflammatory response caused by mTORC2 deficiency both in vitro and in vivo. Interestingly, collective deletion of macrophage mTOR, which ablates mTORC1- and mTORC2-dependent pathways, leads to minimal change in plaque size or complexity, reflecting the balanced yet opposing roles of these signaling arms. CONCLUSIONS: Our data provide the first mechanistic details of macrophage mTOR signaling in atherosclerosis and suggest that therapeutic measures aimed at modulating mTOR need to account for its dichotomous functions.


Assuntos
Aterosclerose , Serina-Treonina Quinases TOR , Camundongos , Animais , Alvo Mecanístico do Complexo 2 de Rapamicina , Serina-Treonina Quinases TOR/metabolismo , Macrófagos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Fatores de Transcrição/metabolismo , Aterosclerose/genética , Aterosclerose/metabolismo
3.
Methods Mol Biol ; 2662: 183-192, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37076681

RESUMO

In the research setting, white adipose tissue (WAT) transplantation, also known as fat transplantation, is often used to understand the physiological function of adipocytes or associated stromal vascular cells such as macrophages in the context of local and systemic metabolism. The mouse is the most common animal model used where WAT from a donor is transferred either to a subcutaneous site of the same organism or to a subcutaneous region of a recipient. Here, we describe in detail the procedure for heterologous fat transplantation, and, given the need for survival surgery, peri- and postoperative care and subsequent histological confirmation of fat grafts will also be discussed.


Assuntos
Adipócitos , Tecido Adiposo Branco , Camundongos , Animais , Tecido Adiposo Branco/metabolismo , Adipócitos/metabolismo , Modelos Animais , Tecido Adiposo/irrigação sanguínea
4.
Autophagy ; 19(3): 886-903, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35982578

RESUMO

Dysfunction in the macrophage lysosomal system including reduced acidity and diminished degradative capacity is a hallmark of atherosclerosis, leading to blunted clearance of excess cellular debris and lipids in plaques and contributing to lesion progression. Devising strategies to rescue this macrophage lysosomal dysfunction is a novel therapeutic measure. Nanoparticles have emerged as an effective platform to both target specific tissues and serve as drug delivery vehicles. In most cases, administered nanoparticles are taken up non-selectively by the mononuclear phagocyte system including monocytes/macrophages leading to the undesirable degradation of cargo in lysosomes. We took advantage of this default route to target macrophage lysosomes to rectify their acidity in disease states such as atherosclerosis. Herein, we develop and test two commonly used acidic nanoparticles, poly-lactide-co-glycolic acid (PLGA) and polylactic acid (PLA), both in vitro and in vivo. Our results in cultured macrophages indicate that the PLGA-based nanoparticles are the most effective at trafficking to and enhancing acidification of lysosomes. PLGA nanoparticles also provide functional benefits including enhanced lysosomal degradation, promotion of macroautophagy/autophagy and protein aggregate removal, and reduced apoptosis and inflammasome activation. We demonstrate the utility of this system in vivo, showing nanoparticle accumulation in, and lysosomal acidification of, macrophages in atherosclerotic plaques. Long-term administration of PLGA nanoparticles results in significant reductions in surrogates of plaque complexity with reduced apoptosis, necrotic core formation, and cytotoxic protein aggregates and increased fibrous cap formation. Taken together, our data support the use of acidic nanoparticles to rescue macrophage lysosomal dysfunction in the treatment of atherosclerosis.Abbreviations: BCA: brachiocephalic arteries; FACS: fluorescence activated cell sorting; FITC: fluorescein-5-isothiocyanatel; IL1B: interleukin 1 beta; LAMP: lysosomal associated membrane protein; LIPA/LAL: lipase A, lysosomal acid type; LSDs: lysosomal storage disorders; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MFI: mean fluorescence intensity; MPS: mononuclear phagocyte system; PEGHDE: polyethylene glycol hexadecyl ether; PLA: polylactic acid; PLGA: poly-lactide-co-glycolic acid; SQSTM1/p62: sequestosome 1.


Assuntos
Aterosclerose , Nanopartículas , Placa Aterosclerótica , Humanos , Autofagia , Aterosclerose/patologia , Macrófagos/metabolismo , Placa Aterosclerótica/patologia , Lisossomos/metabolismo , Ácidos/metabolismo , Poliésteres/metabolismo
5.
STAR Protoc ; 3(4): 101665, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36094885

RESUMO

Previous studies have demonstrated that a high-protein diet leads to increased atherosclerosis in mice, and that this adverse effect is caused by activation of macrophage mTORC1 signaling. Here, we provide a detailed protocol for the evaluation of diet-induced mTORC1 signaling in plaque macrophages in atherosclerosis-prone apolipoprotein E (ApoE) knockout (KO) mice. This protocol includes flow cytometry and immunofluorescence analysis of atherosclerotic macrophages that can be used to study the atherogenic potential of a variety of mTORC1 modulators. For complete details on the use and execution of this protocol, please refer to Zhang et al. (2020).


Assuntos
Aterosclerose , Camundongos , Animais , Citometria de Fluxo , Macrófagos , Camundongos Knockout , Imunofluorescência
6.
Redox Biol ; 54: 102347, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35688114

RESUMO

Ischemic stroke is the leading cause of immortal disability and death worldwide. For treatment in the acute phase, it is necessary to control excessive reactive oxygen species (ROS) damage during ischemia/reperfusion (I/R). Microglia are well known to be closely associated with excessive ROS response in the early stage of I/R. However, the precise roles of microglia associated with mitigating ROS damage, and molecular markers of heterogenetic microglia in the I/R damaged brain has not been clarified. Here, we identified a new type of microglia associated with stroke in the I/R injured brain. Single-cell RNA sequencing (scRNA-seq) was used to assess transcriptional changes of microglia and immune cells in the contralateral (CL) and ipsilateral (IL) hemispheres after transient middle cerebral artery occlusion (tMCAO) surgery to mimic ischemic stroke. We classified a unique type of microglia with enhanced antioxidant function and markers similar to those of disease-associated microglia (DAM), designated them as stroke-associated microglia (SAM). The representative antioxidant enzyme, Peroxiredoxin-1 (Prdx1), was predominantly expressed in SAM and mediated ROS defense genes, including Txn1, Srx1, Mt1, and Mt2. In the Prdx1-/- I/R damaged brain, we observed significantly increased infarction, as assessed by TTC staining, and FACS analysis detected severe microglial cell death. Importantly, scRNA transcriptomics data showed that the SAM population was specifically decreased in Prdx1-/- mice and that these mice exhibited decreased ROS damage resistance. Inflammatory responses which were detected by ELISA and qPCR, were also increased in Prdx1-/- IL hemispheres. Finally, Prdx1-dependent antioxidative SAM were found to be essential for increasing the transcription levels of stroke-protective molecules, such as osteopontin and ferritin. A novel microglia type (SAM) is specifically activated in response to stroke I/R injury, and that Prdx1 expression is required for the activation and enhanced antioxidant function of SAM.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Peroxirredoxinas , Acidente Vascular Cerebral , Animais , Antioxidantes/metabolismo , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , AVC Isquêmico/genética , Camundongos , Microglia/metabolismo , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/metabolismo
7.
Exp Mol Med ; 52(9): 1587-1601, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32929220

RESUMO

Abdominal aortic aneurysm (AAA) is an inflammatory vascular disease characterized by structural deterioration of the aorta caused by inflammation and oxidative stress, leading to aortic dilatation and rupture. Peroxiredoxin 2 (PRDX2), an antioxidant enzyme, has been reported as a potential negative regulator of inflammatory vascular diseases, and it has been identified as a protein that is increased in patients with ruptured AAA compared to patients with nonruptured AAA. In this study, we demonstrated that PRDX2 was a pivotal factor involved in the inhibition of AAA progression. PRDX2 levels were increased in AAA compared with those in normal aortas in both humans and mice. Ultrasound imaging revealed that the loss of PRDX2 accelerated the development of AAA in the early stages and increased AAA incidence in mice infused with angiotensin II (Ang II). Prdx2-/- mice infused with Ang II exhibited increased aortic dilatation and maximal aortic diameter without a change in blood pressure. Structural deterioration of the aortas from Prdx2-/- mice infused with Ang II was associated with increases in the degradation of elastin, oxidative stress, and intramural thrombi caused by microhemorrhages, immature neovessels, and the activation of matrix metalloproteinases compared to that observed in controls. Moreover, an increase in inflammatory responses, including the production of cell adhesion molecules and the accumulation of inflammatory cells and proinflammatory cytokines due to PRDX2 deficiency, accelerated Ang II-induced AAA progression. Our data confirm that PRDX2 plays a role as a negative regulator of the pathological process of AAA and suggest that increasing PRDX2 activity may be a novel strategy for the prevention and treatment of AAA.


Assuntos
Angiotensina II/efeitos adversos , Aneurisma da Aorta Abdominal/etiologia , Aneurisma da Aorta Abdominal/patologia , Suscetibilidade a Doenças , Peroxirredoxinas/deficiência , Animais , Aneurisma da Aorta Abdominal/diagnóstico por imagem , Biomarcadores , Biópsia , Moléculas de Adesão Celular/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Predisposição Genética para Doença , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Modelos Biológicos , Miócitos de Músculo Liso/metabolismo , Peroxirredoxinas/genética , Espécies Reativas de Oxigênio , Ultrassonografia
8.
Circulation ; 142(18): 1736-1751, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-32883094

RESUMO

BACKGROUND: Macrophages produce many inflammation-associated molecules, released by matrix metalloproteinases, such as adhesion molecules, and cytokines, as well, which play a crucial role in atherosclerosis. In this context, we investigated the relationship between Ninjurin-1 (Ninj1 [nerve injury-induced protein]), a novel matrix metalloproteinase 9 substrate, expression, and atherosclerosis progression. METHODS: Ninj1 expression and atherosclerosis progression were assessed in atherosclerotic aortic tissue and serum samples from patients with coronary artery disease and healthy controls, and atheroprone apolipoprotein e-deficient (Apoe-/-) and wild-type mice, as well. Apoe-/- mice lacking systemic Ninj1 expression (Ninj1-/-Apoe-/-) were generated to assess the functional effects of Ninj1. Bone marrow transplantation was also used to generate low-density lipoprotein receptor-deficient (Ldlr-/-) mice that lack Ninj1 specifically in bone marrow-derived cells. Mice were fed a Western diet for 5 to 23 weeks, and atherosclerotic lesions were investigated. The anti-inflammatory role of Ninj1 was verified by treating macrophages and mice with the peptides Ninj11-56 (ML56) and Ninj126-37 (PN12), which mimic the soluble form of Ninj1 (sNinj1). RESULTS: Our in vivo results conclusively showed a correlation between Ninj1 expression in aortic macrophages and the extent of human and mouse atherosclerotic lesions. Ninj1-deficient macrophages promoted proinflammatory gene expression by activating mitogen-activated protein kinase and inhibiting the phosphoinositide 3-kinase/Akt signaling pathway. Whole-body and bone marrow-specific Ninj1 deficiencies significantly increased monocyte recruitment and macrophage accumulation in atherosclerotic lesions through elevated macrophage-mediated inflammation. Macrophage Ninj1 was directly cleaved by matrix metalloproteinase 9 to generate a soluble form that exhibited antiatherosclerotic effects, as assessed in vitro and in vivo. Treatment with the sNinj1-mimetic peptides, ML56 and PN12, reduced proinflammatory gene expression in human and mouse classically activated macrophages, thereby attenuating monocyte transendothelial migration. Moreover, continuous administration of mPN12 alleviated atherosclerosis by inhibiting the enhanced monocyte recruitment and inflammation characteristics of this disorder in mice, regardless of the presence of Ninj1. CONCLUSIONS: Ninj1 is a novel matrix metalloproteinase 9 substrate in macrophages, and sNinj1 is a secreted atheroprotective protein that regulates macrophage inflammation and monocyte recruitment in atherosclerosis. Moreover, sNinj1-mediated anti-inflammatory effects are conserved in human macrophages and likely contribute to human atherosclerosis.


Assuntos
Anti-Inflamatórios/farmacologia , Aterosclerose , Moléculas de Adesão Celular Neuronais , Macrófagos/metabolismo , Fatores de Crescimento Neural , Peptidomiméticos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Aterosclerose/tratamento farmacológico , Aterosclerose/genética , Aterosclerose/metabolismo , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Moléculas de Adesão Celular Neuronais/farmacologia , Feminino , Masculino , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Knockout para ApoE , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo , Fatores de Crescimento Neural/farmacologia , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/genética
9.
Expert Opin Ther Targets ; 24(9): 825-844, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32757967

RESUMO

INTRODUCTION: Inflammasomes are central to atherosclerotic vascular dysfunction with regulatory effects on inflammation, immune modulation, and lipid metabolism. The NLRP3 inflammasome is a critical catalyst for atherogenesis thus highlighting its importance in understanding the pathophysiology of atherosclerosis and for the identification of novel therapeutic targets and biomarkers for the treatment of cardiovascular disease. AREAS COVERED: This review includes an overview of macrophage lipid metabolism and the role of NLRP3 inflammasome activity in cardiovascular inflammation and atherosclerosis. We highlight key activators, signal transducers and major regulatory components that are being considered as putative therapeutic targets for inhibition of NLRP3-mediated cardiovascular inflammation and atherosclerosis. EXPERT OPINION: NLRP3 inflammasome activity lies at the nexus between inflammation and cholesterol metabolism; it offers unique opportunities for understanding atherosclerotic pathophysiology and identifying novel modes of treatment. As such, a host of NLRP3 signaling cascade components have been identified as putative targets for drug development. We catalog these current discoveries in therapeutic targeting of the NLRP3 inflammasome and, utilizing the CANTOS trial as the translational (bench-to-bedside) archetype, we examine the complexities, challenges, and ultimate goals facing the field of atherosclerosis research.


Assuntos
Aterosclerose/terapia , Inflamação/terapia , Terapia de Alvo Molecular , Animais , Aterosclerose/fisiopatologia , Biomarcadores/metabolismo , Doenças Cardiovasculares/fisiopatologia , Doenças Cardiovasculares/terapia , Humanos , Inflamassomos/metabolismo , Inflamação/patologia , Metabolismo dos Lipídeos , Macrófagos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
10.
Nat Metab ; 2(1): 110-125, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-32128508

RESUMO

High protein diets are commonly utilized for weight loss, yet have been reported to raise cardiovascular risk. The mechanisms underlying this risk are unknown. Here, we show that dietary protein drives atherosclerosis and lesion complexity. Protein ingestion acutely elevates amino acid levels in blood and atherosclerotic plaques, stimulating macrophage mTOR signaling. This is causal in plaque progression as the effects of dietary protein are abrogated in macrophage-specific Raptor-null mice. Mechanistically, we find amino acids exacerbate macrophage apoptosis induced by atherogenic lipids, a process that involves mTORC1-dependent inhibition of mitophagy, accumulation of dysfunctional mitochondria, and mitochondrial apoptosis. Using macrophage-specific mTORC1- and autophagy-deficient mice we confirm this amino acid-mTORC1-autophagy signaling axis in vivo. Our data provide the first insights into the deleterious impact of excessive protein ingestion on macrophages and atherosclerotic progression. Incorporation of these concepts in clinical studies will be important to define the vascular effects of protein-based weight loss regimens.


Assuntos
Doenças Cardiovasculares/metabolismo , Dieta Rica em Proteínas , Macrófagos/metabolismo , Mitofagia/fisiologia , Serina-Treonina Quinases TOR/metabolismo , Animais , Fatores de Risco de Doenças Cardíacas , Ativação de Macrófagos , Camundongos , Placa Aterosclerótica/metabolismo
11.
Cell Rep ; 30(12): 4124-4136.e5, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32209473

RESUMO

CD137, a potent costimulatory receptor for CD8+ T cells, is expressed in various non-T cells, but little is known about its regulatory functions in these cells. In this study, we show that CD137 signaling, specifically in intestinal CD11b-CD103+ dendritic cells (DCs), restricts acute colitis progression. Mechanistically, CD137 engagement activates TAK1 and subsequently stimulates the AMPK-PGC-1α axis to enhance expression of the Aldh1a2 gene encoding the retinoic acid (RA) metabolizing enzyme RALDH2. RA can act on CD11b+CD103- DCs and induce SOCS3 expression, which, in turn, suppresses p38MAPK activation and interleukin-23 (IL-23) production. Administration of RA in DC-specific CD137-/- mice represses IL-23-producing CD11b+CD103- DCs and TH17 cells, indicating that RA is a major inhibitory effector molecule against intestinal CD11b+CD103- DCs. Additionally, the therapeutic effect of the anti-CD137 antibody is abrogated in DC-specific CD137-/- mice. Taken together, our results define a mechanism of paracrine immunoregulation operating between adjacent DC subsets in the intestine.


Assuntos
Aldeído Oxirredutases/metabolismo , Antígenos CD/metabolismo , Antígeno CD11b/metabolismo , Colite/patologia , Células Dendríticas/metabolismo , Cadeias alfa de Integrinas/metabolismo , Transdução de Sinais , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo , Doença Aguda , Adenilato Quinase/metabolismo , Animais , Apoptose , Diferenciação Celular , Colite/imunologia , Suscetibilidade a Doenças , Fatores de Transcrição Forkhead/metabolismo , Intestinos/patologia , MAP Quinase Quinase Quinases/metabolismo , Camundongos Endogâmicos C57BL , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Linfócitos T Reguladores/imunologia , Células Th17/citologia , Tretinoína/metabolismo , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/deficiência
12.
J Cereb Blood Flow Metab ; 40(1): 187-203, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-30375917

RESUMO

Management of deep hypothermic (DH) cardiopulmonary bypass (CPB), a critical neuroprotective strategy, currently relies on non-invasive temperature to guide cerebral metabolic suppression during complex cardiac surgery in neonates. Considerable inter-subject variability in temperature response and residual metabolism may contribute to the persisting risk for postoperative neurological injury. To characterize and mitigate this variability, we assess the sufficiency of conventional nasopharyngeal temperature (NPT) guidance, and in the process, validate combined non-invasive frequency-domain diffuse optical spectroscopy (FD-DOS) and diffuse correlation spectroscopy (DCS) for direct measurement of cerebral metabolic rate of oxygen (CMRO2). During CPB, n = 8 neonatal swine underwent cooling from normothermia to 18℃, sustained DH perfusion for 40 min, and then rewarming to simulate cardiac surgery. Continuous non-invasive and invasive measurements of intracranial temperature (ICT) and CMRO2 were acquired. Significant hysteresis (p < 0.001) between cooling and rewarming periods in the NPT versus ICT and NPT versus CMRO2 relationships were found. Resolution of this hysteresis in the ICT versus CMRO2 relationship identified a crucial insufficiency of conventional NPT guidance. Non-invasive CMRO2 temperature coefficients with respect to NPT (Q10 = 2.0) and ICT (Q10 = 2.5) are consistent with previous reports and provide further validation of FD-DOS/DCS CMRO2 monitoring during DH CPB to optimize management.


Assuntos
Temperatura Corporal , Encéfalo/fisiologia , Ponte Cardiopulmonar/métodos , Hipotermia Induzida , Monitorização Fisiológica/métodos , Oxigênio/metabolismo , Animais , Animais Recém-Nascidos , Encéfalo/metabolismo , Modelos Animais , Perfusão , Análise Espectral/métodos , Suínos
13.
J Immunol ; 201(6): 1784-1798, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30097529

RESUMO

Ischemic myocardial injury results in sterile cardiac inflammation that leads to tissue repair, two processes controlled by mononuclear phagocytes. Despite global burden of cardiovascular diseases, we do not understand the functional contribution to pathogenesis of specific cardiac mononuclear phagocyte lineages, in particular dendritic cells. To address this limitation, we used detailed lineage tracing and genetic studies to identify bona fide murine and human CD103+ conventional dendritic cell (cDC)1s, CD11b+ cDC2s, and plasmacytoid DCs (pDCs) in the heart of normal mice and immunocompromised NSG mice reconstituted with human CD34+ cells, respectively. After myocardial infarction (MI), the specific depletion of cDCs, but not pDCs, improved cardiac function and prevented adverse cardiac remodeling. Our results showed that fractional shortening measured after MI was not influenced by the absence of pDCs. Interestingly, however, depletion of cDCs significantly improved reduction in fractional shortening. Moreover, fibrosis and cell areas were reduced in infarcted zones. This correlated with reduced numbers of cardiac macrophages, neutrophils, and T cells, indicating a blunted inflammatory response. Accordingly, mRNA levels of proinflammatory cytokines IL-1ß and IFN-γ were reduced. Collectively, our results demonstrate the unequivocal pathological role of cDCs following MI.


Assuntos
Movimento Celular/imunologia , Células Dendríticas/imunologia , Infarto do Miocárdio/imunologia , Animais , Movimento Celular/genética , Células Dendríticas/patologia , Humanos , Interferon gama/genética , Interferon gama/imunologia , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Macrófagos/imunologia , Macrófagos/patologia , Camundongos , Camundongos Knockout , Monócitos/imunologia , Monócitos/patologia , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Neutrófilos/imunologia , Neutrófilos/patologia , Linfócitos T/imunologia , Linfócitos T/patologia
14.
BMB Rep ; 51(10): 520-525, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29936931

RESUMO

Cardiovascular diseases arising from atherosclerosis are the leading causes of mortality and morbidity worldwide. Lipid-lowering agents have been developed in order to treat hypercholesterolemia, a major risk factor for atherosclerosis. However, the prevalence of cardiovascular diseases is increasing, indicating a need to identify novel therapeutic targets and develop new treatment agents. Adenosine receptors (ARs) are emerging as therapeutic targets in asthma, rheumatoid arthritis, cancer, ischemia, and inflammatory diseases. This study assessed whether LJ-1888, a selective antagonist for A3 AR, can inhibit the development of atherosclerosis in apolipoprotein E knock-out (ApoE-/-) mice who are fed a western diet. Plaque formation was significantly lower in ApoE-/- mice administered LJ-1888 than in mice not administered LJ-1888, without any associated liver damage. LJ-1888 treatment of ApoE-/- mice prevented western diet-induced hypercholesterolemia by markedly reducing low-density lipoprotein cholesterol levels and significantly increasing high-density lipoprotein cholesterol concentrations. Reduced hypercholesterolemia in ApoE-/- mice administered LJ-1888 was associated with the enhanced expression of genes involved in bile acid biosynthesis. These findings indicate that LJ-1888, a selective antagonist for A3 AR, may be a novel candidate for the treatment of atherosclerosis and hypercholesterolemia. [BMB Reports 2018; 51(10): 521-526].


Assuntos
Antagonistas do Receptor A3 de Adenosina/uso terapêutico , Adenosina/uso terapêutico , Apolipoproteínas E/deficiência , Aterosclerose/tratamento farmacológico , Hipercolesterolemia/tratamento farmacológico , Receptor A3 de Adenosina/metabolismo , Adenosina/farmacologia , Antagonistas do Receptor A3 de Adenosina/farmacologia , Animais , Aterosclerose/complicações , Aterosclerose/patologia , Ácidos e Sais Biliares/biossíntese , Vias Biossintéticas/genética , Dieta Ocidental , Regulação da Expressão Gênica/efeitos dos fármacos , Hipercolesterolemia/complicações , Hipercolesterolemia/patologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos Knockout , Placa Aterosclerótica/tratamento farmacológico , Placa Aterosclerótica/patologia , Fatores de Transcrição/metabolismo
15.
Autophagy ; 14(4): 724-726, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29394113

RESUMO

In the atherosclerotic plaque, macrophages are the key catabolic workhorse responsible for clearing lipid and dead cell debris. To survive the highly proinflammatory and lipotoxic plaque environment, macrophages must adopt strategies for maintaining tight homeostasis and self-renewal. Macroautophagy/autophagy is a pro-survival cellular pathway wherein damaged or excess cellular cargoes are encapsulated by a double-membrane compartment and delivered to the lysosome for hydrolysis. Previously, macrophage-specific autophagy deficiency has been shown to be atherogenic through several complementary mechanisms including hyperactivation of the inflammasome, defective efferocytosis, accumulation of cytotoxic protein aggregates, and impaired lipid degradation. Conversely, in a recent study we hypothesized that enhancing the macrophage autophagy-lysosomal system through genetic or pharmacological means could protect against atherosclerosis. We demonstrated that TFEB, a transcription factor master regulator of autophagy and lysosome biogenesis, coordinately enhances the function of this system to reduce atherosclerotic plaque burden. Further, we characterized the disaccharide trehalose as a novel inducer of TFEB with similar atheroprotective effects. Overall, these findings mechanistically interrogate the importance and therapeutic promise of a functional autophagy-lysosome degradation system in plaque macrophage biology.


Assuntos
Autofagia/efeitos dos fármacos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Lisossomos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Trealose/farmacologia , Animais , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/efeitos dos fármacos , Inflamassomos/efeitos dos fármacos , Inflamassomos/metabolismo , Lisossomos/metabolismo , Macrófagos/metabolismo , Fagocitose/efeitos dos fármacos , Substâncias Protetoras/farmacologia
16.
Autophagy ; 14(1): 120-133, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28605287

RESUMO

Oxidative stress activates macroautophagy/autophagy and contributes to atherogenesis via lipophagic flux, a form of lipid removal by autophagy. However, it is not known exactly how endogenous antioxidant enzymes are involved in lipophagic flux. Here, we demonstrate that the antioxidant PRDX1 (peroxiredoxin 1) has a crucial role in the maintenance of lipophagic flux in macrophages. PRDX1 is more highly expressed than other antioxidant enzymes in monocytes and macrophages. We determined that Prdx1 deficiency induced excessive oxidative stress and impaired maintenance of autophagic flux in macrophages. Prdx1-deficient macrophages had higher intracellular cholesterol mass and lower cholesterol efflux compared with wild type. This perturbation in cholesterol homeostasis was due to impaired lipophagic cholesterol hydrolysis caused by excessive oxidative stress, resulting in the inhibition of free cholesterol formation and the reduction of NR1H3 (nuclear receptor subfamily 1, group H, member 3) activity. Notably, impairment of both lipophagic flux and cholesterol efflux was restored by the 2-Cys PRDX-mimics ebselen and gliotoxin. Consistent with this observation, apoe -/- mice transplanted with bone marrow from prdx1-/-apoe-/- mice had increased plaque formation compared with apoe-/- BM-transplanted recipients. This study reveals that PRDX1 is crucial to regulating lipophagic flux and maintaining macrophage cholesterol homeostasis against oxidative stress. We suggest that PRDX1-dependent control of oxidative stress may provide a strategy for treating atherosclerosis and autophagy-related human diseases.


Assuntos
Autofagia , Colesterol/metabolismo , Macrófagos/metabolismo , Estresse Oxidativo , Peroxirredoxinas/deficiência , Animais , Aterosclerose/enzimologia , Células Cultivadas , Humanos , Receptores X do Fígado/metabolismo , Camundongos , Camundongos Knockout , Peroxirredoxinas/química , Peroxirredoxinas/genética , Peroxirredoxinas/uso terapêutico
17.
Zoolog Sci ; 31(11): 748-57, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25366158

RESUMO

Parvalbumin (PV) is thought to play a major role in buffering intracellular calcium. We studied the distribution, morphology of PV-immunoreactive (IR) cells, and the effect of enucleation on the PV distribution in the superior colliculus (SC) in dog (Canis familiaris) and compared PV labeling to that of calbindin D28K (CB) and GABA. These cells formed three laminar tiers in the dog SC; 1) the upper superficial gray layer (SGL), 2) the lower optic layer (OL) and the upper intermediate gray layer, and 3) the deep layer. The third tier was not very distinct when compared with the other two tiers. The distribution of PV-IR cells is thus complementary to that of CB-IR tiers. Our present data on the distribution of PV-IR cells within the superficial layers are strikingly different from those in previously studied mammals, which show PV-IR cells within the lower SGL and upper OL. However, there were no distinct differences in distribution within the deep layers compared with that of previously studied mammals. PV-IR cells in the SC varied dramatically in morphology and size, and included round/oval, vertical fusiform, stellate, horizontal and pyriform cells. Two-color immunofluorescence revealed quantitatively that 11.67% of the PV-IR cells colocalized with GABA. Monocular enucleation appeared to have no effect on the distribution of PV-IR cells in the contralateral SC. Similar to CB, these data suggest that retinal projection may not control the expression of PV in the dog SC. These results provide important information for delineating similarities and differences in the neurochemical architecture of the visual system.


Assuntos
Cães/fisiologia , Enucleação Ocular/veterinária , Parvalbuminas/metabolismo , Colículos Superiores/citologia , Ácido gama-Aminobutírico/metabolismo , Animais , Neurônios/metabolismo , Neurônios/ultraestrutura , Colículos Superiores/fisiologia
18.
J Korean Neurosurg Soc ; 56(1): 21-7, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25289121

RESUMO

OBJECTIVE: Infectious spinal disease is regarded as an infection by a specific organism that affects the vertebral body, intervertebral disc and adjacent perivertebral soft tissue. Its incidence seems to be increasing as a result of larger proportion of the older patients with chronic debilitating disease, the rise of intravenous drug abuser, and the increase in spinal procedure and surgery. In Korea, studies assessing infectious spinal disease are rare and have not been addressed in recent times. The objectives of this study are to describe the epidemiology of all kind of spinal infectious disease and their clinical and microbiological characteristics as well as to assess the diagnostic methodology and the parameters related to the outcomes. METHODS: A retrospective study was performed in all infectious spinal disease cases presenting from January 2005 to April 2010 to three tertiary teaching hospitals within a city of 1.5 million in Korea. Patient demographics, risk factors, clinical features, and outcomes were assessed. Risk factors entailed the presence of diabetes, chronic renal failure, liver cirrhosis, immunosuppressants, remote infection, underlying malignancy and previous spinal surgery or procedure. We comparatively analyzed the results between the groups of pyogenic and tuberculous spinal infection. SPSS version 14 statistical software was used to perform the analyses of the data. The threshold for statistical significance was established at p<0.05. RESULTS: Ninety-two cases fulfilled the inclusion criteria and were reviewed. Overall, patients of tuberculous spinal infection (TSI) and pyogenic spinal infection (PSI) entailed 20 (21.7%) and 72 (78.3%) cases, respectively. A previous spinal surgery or procedure was the most commonly noted risk factor (39.1%), followed by diabetes (15.2%). The occurrence of both pyogenic and tuberculous spondylitis was predominant in the lumbar spine. Discs are more easily invaded in PSI. At initial presentation, white cell blood count and C-reactive protein levels were higher in PSI compared to TSI (p<0.05). Etiological agents were identified in 53.3%, and the most effective method for identification of etiological agents was tissue culture (50.0%). Staphyococcus aureus was the most commonly isolated infective agent associated with pyogenic spondylitis, followed by E. coli. Surgical treatment was performed in 31.5% of pyogenic spondylitis and in 35.0% of tuberculous spondylitis cases. CONCLUSION: Many previous studies in Korea usually reported that tuberculous spondylitis is the predominant infection. However, in our study, the number of pyogenic infection was 3 times greater than that of tuberculous spinal disease. Etiological agents were identified in a half of all infectious spinal disease. For better outcomes, we should try to identify the causative microorganism before antibiotic therapy and make every effort to improve the result of culture and biopsy.

19.
FASEB J ; 28(11): 4779-91, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25059229

RESUMO

CD137 (4-1BB), a member of the tumor necrosis factor receptor superfamily, has been reported to be expressed in atherosclerotic plaques, and to promote lesion formation. However, the role of CD137 in mediating atherosclerotic plaque stability and the possible underlying molecular and cellular mechanisms are poorly understood. Here, apolipoprotein E-deficient (ApoE(-/-)) and CD137-deficient ApoE(-/-) (ApoE(-/-)CD137(-/-)) mice fed a chow diet for 66 wk were used. CD137 induces plaque instability, which is characterized by increased plaque necrosis, decreased collagen content, decreased vascular smooth muscle cell (VSMC) content, and increased macrophage infiltration. CD137 also increases the infiltration of effector T (Teff) cells into plaque lesion sites, resulting in increased interferon-γ (IFN-γ) expression. Interestingly, Teff-cell-derived IFN-γ inhibits collagen synthesis in atherosclerotic plaques. Furthermore, CD137 activation increases the apoptosis of VSMCs, possibly by decreasing the antiapoptotic regulator, Bcl-2, and subsequently up-regulating cleaved caspase-3. In macrophages, activation of CD137 signaling boosted the oxidized low density lipoprotein-induced expression of matrix metalloproteinase 9 via the p38 mitogen-activated protein kinase and extracellular signal-regulated kinase1/2 signaling pathways. In summary, activation of CD137 signaling decreases the stability of advanced atherosclerotic plaques via its combined effects on Teff cells, VSMCs, and macrophages.


Assuntos
Ligante 4-1BB/imunologia , Aterosclerose/metabolismo , Hiperlipidemias/metabolismo , Macrófagos/metabolismo , Placa Aterosclerótica/metabolismo , Linfócitos T/metabolismo , Animais , Apoptose/efeitos dos fármacos , Aterosclerose/imunologia , Interferon gama/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Placa Aterosclerótica/imunologia , Transdução de Sinais/imunologia , Linfócitos T/imunologia
20.
Exp Mol Med ; 44(5): 311-8, 2012 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-22282402

RESUMO

In this study, the synergistic effect of 6-[4-(1-cyclohexyl- 1H-tetrazol-5-yl) butoxy]-3,4-dihydro-2(1H )-quinolinone (cilostazol) and Ginkgo biloba extract (GbE) was examined in apolipoprotein E (ApoE) null mice. Co-treatment with GbE and cilostazol synergistically decreased reactive oxygen species (ROS) production in ApoE null mice fed a high-fat diet. Co-treatment resulted in a significantly decreased atherosclerotic lesion area compared to untreated ApoE mice. The inflammatory cytokines and adhesion molecules such as monocyte chemoattractant-1 (MCP-1), soluble vascular cell adhesion molecule-1 (sVCAM-1), and VCAM-1 which can initiate atherosclerosis were significantly reduced by the co-treatment of cilostazol with GbE. Further, the infiltration of macrophages into the intima was decreased by co-treatment. These results suggest that co-treatment of GbE with cilostazol has a more potent anti-atherosclerotic effect than treatment with cilostazol alone in hyperlipidemic ApoE null mice and could be a valuable therapeutic strategy for the treatment of atherosclerosis.


Assuntos
Aterosclerose/tratamento farmacológico , Ginkgo biloba/química , Extratos Vegetais/administração & dosagem , Espécies Reativas de Oxigênio/metabolismo , Tetrazóis/administração & dosagem , Animais , Apolipoproteínas E/genética , Apolipoproteínas E/fisiologia , Cilostazol , Citocinas/metabolismo , Modelos Animais de Doenças , Sinergismo Farmacológico , Humanos , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Nus , Extratos Vegetais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA