Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Microbiol Biotechnol ; 31(12): 1624-1631, 2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-34675142

RESUMO

Prodigiosin as a high-valued compound, which is a microbial secondary metabolite, has the potential for antioxidant and anticancer effects. However, the large-scale production of functionally active Hahella chejuensis-derived prodigiosin by fermentation in a cost-effective manner has yet to be achieved. In the present study, we established carbon source-optimized medium conditions, as well as a procedure for producing prodigiosin by fermentation by culturing H. chejuensis using 10 L and 200 L bioreactors. Our results showed that prodigiosin productivity using 250 ml flasks was higher in the presence of glucose than other carbon sources, including mannose, sucrose, galactose, and fructose, and could be scaled up to 10 L and 200 L batches. Productivity in the glucose (2.5 g/l) culture while maintaining the medium at pH 6.89 during 10 days of cultivation in the 200 L bioreactor was measured and increased more than productivity in the basal culture medium in the absence of glucose. Prodigiosin production from 10 L and 200 L fermentation cultures of H. chejuensis was confirmed by high-performance liquid chromatography (HPLC) and liquid chromatography-mass spectrometry (LC-MS) analyses for more accurate identification. Finally, the anticancer activity of crude extracted prodigiosin against human cancerous leukemia THP-1 cells was evaluated and confirmed at various concentrations. Conclusively, we demonstrate that culture conditions for H. chejuensis using a bioreactor with various parameters and ethanol-based extraction procedures were optimized to mass-produce the marine bacterium-derived high purity prodigiosin associated with anti-cancer activity.


Assuntos
Gammaproteobacteria/metabolismo , Prodigiosina/metabolismo , Antineoplásicos/isolamento & purificação , Antineoplásicos/metabolismo , Reatores Biológicos , Carbono/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Meios de Cultura/química , Fermentação , Humanos , Prodigiosina/isolamento & purificação , Células THP-1
2.
J Cosmet Dermatol ; 20(3): 1009-1016, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32697858

RESUMO

BACKGROUND: Recent studies about the important roles of autophagy signaling in sebaceous lipogenesis and epidermal differentiation suggest potential benefits of autophagy activation in acne. AIMS: To investigate the effects of an autophagy activator on acne-prone skin. METHODS: Autophagy signaling in human immortalized SZ95 sebocytes, normal human epidermal keratinocytes, and 3D reconstituted skin was examined. Effects of an autophagy-activating peptide on sebaceous lipogenesis were measured by fluorescence microscopic analysis. The clinical efficacy in acne-prone skin was evaluated through an eight-week, double-blind, randomized, vehicle-controlled study. Changes in skin surface lipid compositions were further analyzed. RESULTS: In cultured sebocytes and keratinocytes, the investigated autophagy-activating peptide increased LC3-II expression, indicating a stimulation of autophagy signaling. Testosterone and linoleic acid treatment induced lipogenesis in cultured sebocytes and is further inhibited by the autophagy activator peptide treatment. Increased expression of differentiation marker proteins in cultured keratinocytes was also observed by autophagy-activating peptide. In clinical study, reduction of closed comedones and the amount of skin surface lipids as well as of trans-epidermal water loss (TEWL) were observed in acne-prone skin after autophagy-activating peptide application. In addition, reduction of squalene and increase in cholesterol were observed after an 8-week application. CONCLUSIONS: Topical application of an autophagy activator downregulated sebaceous lipogenesis and improved the skin barrier function. Considering the important roles of sebum and skin barrier function in acne pathogenesis, autophagy activation might represent a new therapeutic option in early forms of acne.


Assuntos
Acne Vulgar , Glândulas Sebáceas , Acne Vulgar/tratamento farmacológico , Autofagia , Humanos , Peptídeos , Sebo
4.
Int J Mol Sci ; 21(1)2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31861912

RESUMO

The dermal-epidermal junction (DEJ) provides a physical and biological interface between the epidermis and the dermis. In addition to providing a structural integrity, the DEJ also acts as a passageway for molecular transport. Based on the recently reported importance of the DEJ in skin aging, novel peptide derivatives have been tested for their effects on basement membrane (BM) protein expressions in cultured human epidermal keratinocytes. As a result, protein expressions of collagen XVII, laminin and nidogen were stimulated by the test peptide and peptides complex. Further ex vivo evaluation using excised human skin, confirmed that the topical application of the peptides complex significantly increased dermal collagen expression, as well as expressions of collagen XVII and laminin. Interestingly, while the origin of the laminin protein is epidermal keratinocytes, the immunohistochemical staining of skin showed that laminin was only detected in the uppermost layer of the dermis, which suggests a tight assembly of laminin protein onto the dermal side of the DEJ. These results suggest that a peptide complex could improve the structural properties of the DEJ through its ability to stimulate BM proteins. In order to evaluate the anti-wrinkle benefits of the peptide complex in vivo, a clinical study was performed on 22 healthy Asian female volunteers older than 40 years. As a result, significant improvements in skin wrinkles for all of the five sites were observed after two weeks, as assessed by skin topographic measurements. Collectively, these results demonstrate the anti-aging efficacy of the peptides complex.


Assuntos
Membrana Basal/efeitos dos fármacos , Queratinócitos/efeitos dos fármacos , Peptídeos/farmacologia , Envelhecimento da Pele/efeitos dos fármacos , Pele/efeitos dos fármacos , Adulto , Autoantígenos/análise , Linhagem Celular , Colágeno Tipo I/análise , Feminino , Humanos , Queratinócitos/química , Queratinócitos/citologia , Laminina/análise , Pessoa de Meia-Idade , Colágenos não Fibrilares/análise , Pele/química , Pele/citologia , Colágeno Tipo XVII
5.
Int J Mol Sci ; 20(3)2019 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-30691106

RESUMO

Pollution-induced skin damage results in oxidative stress; cellular toxicity; inflammation; and, ultimately, premature skin aging. Previous studies suggest that the activation of autophagy can protect oxidation-induced cellular damage and aging-like changes in skin. In order to develop new anti-pollution ingredients, this study screened various kinds of natural extracts to measure their autophagy activation efficacy in cultured dermal fibroblast. The stimulation of autophagy flux by the selected extracts was further confirmed both by the expression of proteins associated with the autophagy signals and by electron microscope. Crepidiastrum denticulatum (CD) extract treated cells showed the highest autophagic vacuole formation in the non-cytotoxic range. The phosphorylation of adenosine monophosphate kinase (AMPK), but not the inhibition of mammalian target of rapamycin (mTOR), was observed by CD-extract treatment. Its anti-pollution effects were further evaluated with model compounds, benzo[a]pyrene (BaP) and cadmium chloride (CdCl2), and a CD extract treatment resulted in both the protection of cytotoxicity and a reduction of proinflammatory cytokines. These results suggest that the autophagy activators can be a new protection regimen for anti-pollution. Therefore, CD extract can be used for anti-inflammatory and anti-pollution cosmetic ingredients.


Assuntos
Asteraceae/química , Poluentes Ambientais/efeitos adversos , Células Epidérmicas/citologia , Extratos Vegetais/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia , Benzopirenos/efeitos adversos , Cloreto de Cádmio/efeitos adversos , Células Cultivadas , Citocinas/metabolismo , Células Epidérmicas/efeitos dos fármacos , Células Epidérmicas/metabolismo , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Microscopia Eletrônica de Transmissão , Estresse Oxidativo/efeitos dos fármacos , Fosforilação , Extratos Vegetais/química , Serina-Treonina Quinases TOR/metabolismo
6.
Int J Dermatol ; 50(7): 832-7, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21699519

RESUMO

BACKGROUND: Although several studies have reported on the biological effects of ultraviolet (UV) radiation, there have been only a few reports on the changes in epidermal lipids following long-term UV irradiation at suberythemal dose (SED), to which people are usually exposed during their lifetime. OBJECTIVES: To investigate the changes of epidermal lipid properties after long-term UV radiation with SED. MATERIALS AND METHODS: Hairless mice were irradiated three times weekly for 15 weeks at an SED of UV (UVB: 20 mJ/cm(2) ; UVA: 14 J/cm(2) ). Every three weeks, transepidermal water loss (TEWL) was measured by a Tewameter. The morphological alterations of stratum corneum (SC) lipid lamellae were examined by electron microscopy (EM). Activities of three key enzymes for mRNA of serine palmitoyl transferase, fatty acid synthase, and HMG CoA reductase were analyzed with real time reverse transcriptase-polymerase chain reaction. We also measured the amount of ceramide, cholesterol sulfate, and free fatty acid in the SC by high-performance thin-layer chromatography with exposed times. RESULTS: The SED UV-irradiated group showed increased TEWL after 12 weeks. Following the irradiation period, EM revealed incomplete and separated lamellae at SC intercellular space. mRNA of three key enzymes was increased until six weeks of UV irradiation and decreased thereafter. However, three major lipid amounts gradually decreased throughout the exposed period, with a notable decrease in ceramide. CONCLUSIONS: Long-term UV irradiation even with SED influences skin barrier function and structure with prominent ceramide decrease in SC intercellular lipid.


Assuntos
Epiderme/patologia , Epiderme/efeitos da radiação , Envelhecimento da Pele/efeitos da radiação , Raios Ultravioleta/efeitos adversos , Animais , Ceramidas/metabolismo , Ésteres do Colesterol/metabolismo , Relação Dose-Resposta à Radiação , Epiderme/metabolismo , Eritema/prevenção & controle , Ácido Graxo Sintases/genética , Feminino , Regulação Enzimológica da Expressão Gênica/efeitos da radiação , Hidroximetilglutaril-CoA Redutases/genética , Camundongos , Camundongos Pelados , Receptores de Superfície Celular/metabolismo , Serina C-Palmitoiltransferase/genética , Envelhecimento da Pele/patologia , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA