Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Control Release ; 373: 55-69, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38971428

RESUMO

Immunogenic cell death (ICD) holds the potential for in situ tumor vaccination while concurrently eradicating tumors and stimulating adaptive immunity. Most ICD inducers, however, elicit insufficient immune responses due to negative feedback against ICD biomarkers, limited infiltration of antitumoral immune cells, and the immunosuppressive tumor micro-environment (TME). Recent findings highlight the pivotal roles of stimulators of interferon gene (STING) activation, particularly in stimulating antigen-presenting cells (APCs) and TME reprogramming, addressing ICD limitations. Herein, we introduced 'tumor phagocytosis-driven STING activation', which involves the activation of STING in APCs during the recognition of ICD-induced cancer cells. We developed a polypeptide-based nanocarrier encapsulating both doxorubicin (DOX) and diABZI STING agonist 3 (dSA3) to facilitate this hypothesis in vitro and in vivo. After systemic administration, nanoparticles predominantly accumulated in tumor tissue and significantly enhanced anticancer efficacy by activating tumor phagocytosis-driven STING activation in MC38 and TC1 tumor models. Immunological activation of APCs occurred within 12 h, subsequently leading to the activation of T cells within 7 days, observed in both the TME and spleen. Furthermore, surface modification of nanoparticles with cyclic RGD (cRGD) moieties, which actively target integrin αvß3, enhances tumor accumulation and eradication, thereby verifying the establishment of systemic immune memory. Collectively, this study proposes the concept of tumor phagocytosis-driven STING activation and its effectiveness in generating short-term and long-term immune responses.


Assuntos
Doxorrubicina , Proteínas de Membrana , Camundongos Endogâmicos C57BL , Fagocitose , Microambiente Tumoral , Animais , Proteínas de Membrana/imunologia , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Fagocitose/efeitos dos fármacos , Doxorrubicina/administração & dosagem , Feminino , Nanopartículas/administração & dosagem , Nanopartículas/química , Linhagem Celular Tumoral , Neoplasias/imunologia , Neoplasias/tratamento farmacológico , Neoplasias/terapia , Camundongos , Morte Celular Imunogênica/efeitos dos fármacos , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/efeitos dos fármacos , Antibióticos Antineoplásicos/administração & dosagem , Humanos , Peptídeos/administração & dosagem , Peptídeos/química
2.
Nat Biomed Eng ; 8(5): 593-610, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38641710

RESUMO

Intracellular DNA sensors regulate innate immunity and can provide a bridge to adaptive immunogenicity. However, the activation of the sensors in antigen-presenting cells (APCs) by natural agonists such as double-stranded DNAs or cyclic nucleotides is impeded by poor intracellular delivery, serum stability, enzymatic degradation and rapid systemic clearance. Here we show that the hydrophobicity, electrostatic charge and secondary conformation of helical polypeptides can be optimized to stimulate innate immune pathways via endoplasmic reticulum stress in APCs. One of the three polypeptides that we engineered activated two major intracellular DNA-sensing pathways (cGAS-STING (for cyclic guanosine monophosphate-adenosine monophosphate synthase-stimulator of interferon genes) and Toll-like receptor 9) preferentially in APCs by promoting the release of mitochondrial DNA, which led to the efficient priming of effector T cells. In syngeneic mouse models of locally advanced and metastatic breast cancers, the polypeptides led to potent DNA-sensor-mediated antitumour responses when intravenously given as monotherapy or with immune checkpoint inhibitors. The activation of multiple innate immune pathways via engineered cationic polypeptides may offer therapeutic advantages in the generation of antitumour immune responses.


Assuntos
Células Apresentadoras de Antígenos , Imunidade Inata , Peptídeos , Animais , Imunidade Inata/efeitos dos fármacos , Peptídeos/química , Peptídeos/farmacologia , Camundongos , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/efeitos dos fármacos , Humanos , Feminino , Cátions/química , Camundongos Endogâmicos C57BL , Linhagem Celular Tumoral , Receptor Toll-Like 9/metabolismo , Neoplasias da Mama/imunologia , Neoplasias da Mama/tratamento farmacológico , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/química
3.
Exp Mol Med ; 56(2): 344-354, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38297160

RESUMO

UPF1, a novel posttranscriptional regulator, regulates the abundance of transcripts, including long noncoding RNAs (lncRNAs), and thus plays an important role in cell homeostasis. In this study, we revealed that UPF1 regulates the abundance of hepatocellular carcinoma upregulated EZH2-associated lncRNA (lncRNA-HEIH) by binding the CG-rich motif, thereby regulating hepatocellular carcinoma (HCC) tumorigenesis. UPF1-bound lncRNA-HEIH was susceptible to degradation mediated by UPF1 phosphorylation via SMG1 and SMG5. According to analysis of RNA-seq and public data on patients with liver cancer, the expression of lncRNA-HEIH increased the levels of miR-194-5p targets and was inversely correlated with miR-194-5p expression in HCC patients. Furthermore, UPF1 depletion upregulated lncRNA-HEIH, which acts as a decoy of miR-194-5p that targets GNA13, thereby promoting GNA13 expression and HCC proliferation. The UPF1/lncRNA-HEIH/miR-194-5p/GNA13 regulatory axis is suggested to play a crucial role in cell progression and may be a suitable target for HCC therapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , RNA Longo não Codificante , Humanos , Carcinogênese , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , MicroRNAs/genética , RNA Helicases/genética , RNA Longo não Codificante/genética , Transativadores/genética
4.
ACS Biomater Sci Eng ; 8(12): 5188-5198, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36449494

RESUMO

Even though chemotherapy regimens for treating cancer by inducing apoptosis are extensively utilized, their therapeutic effect is hindered by multiple limitations. Thus, a combination of other types of anticancer modalities is urgently needed. Herein, a tannic acid (TA)-Fe3+-coated doxorubicin (DOX)-encapsulated 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(poly(ethylene glycol))-2000] (ammonium salt) (DSPE-PEG) micelle (TFDD) for apoptosis/ferroptosis-mediated immunogenic cell death (ICD) is reported. By coating TA-Fe3+ on the surface of DOX-loaded micelles, an apoptotic agent and a ferroptotic agent are simultaneously delivered into the cancer cells and induce cell death. Furthermore, the intracellular oxidative environment generated by the apoptosis/ferroptosis hybrid pathway stimulates the endoplasmic reticulum (ER) and leads to ICD induction. The in vivo results show that the combination treatment of TFDD and anti-programmed death-ligand 1 antibodies (anti-PD-L1) considerably inhibits tumor growth and improves antitumor immunity by activating CD4+ and CD8+ T cells and decreasing the ratio of regulatory T cells (Treg) to CD4+ T cells. This study suggests that the apoptosis/ferroptosis-mediated ICD inducer may offer a potent strategy for enhanced cancer immunotherapy.


Assuntos
Morte Celular Imunogênica , Neoplasias , Linfócitos T CD8-Positivos , Antígeno B7-H1 , Apoptose , Doxorrubicina/farmacologia , Micelas , Neoplasias/tratamento farmacológico
5.
Mol Cancer ; 21(1): 197, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36224588

RESUMO

BACKGROUND: Circular RNAs (circRNAs) play a critical role in colorectal cancer (CRC) progression, including metastasis. However, the detailed molecular mechanism is not fully understood. METHODS: Differentially expressed circRNAs between primary KM12C and liver metastatic KM12L4 colon cancer cells were identified by microarray. The expression of circRNAs was measured by semi-quantitative (semi-qPCR) and real time-quantitative PCR (RT-qPCR). Metastatic potential including invasive and migratory abilities, and liver metastasis were examined by transwell assays and intrasplenic injection, respectively. CircPPFIA1-associated microRNA (miRNA) and RNA-binding protein (RBP) were screened by an antisense oligonucleotide (ASO) pulldown experiment. The effects of circPPFIA1 on target gene expression were evaluated by RT-qPCR and western blot analyses. RESULTS: By analyzing circRNA microarray data, we identified two anti-metastatic circRNAs generated from PPFIA1 with different length, which named circPPFIA1-L (long) and -S (short). They were significantly downregulated in liver metastatic KM12L4 cells compared to primary KM12C cells. The knockdown of circPPFIA1s in KM12C enhanced metastatic potential and increased liver metastasis. Conversely, overexpression of circPPFIA1s weakened metastatic potential and inhibited liver metastasis. circPPFIA1s were found to function as sponges of oncogenic miR-155-5p and Hu antigen R (HuR) by an ASO pulldown experiment. circPPFIA1s upregulated tumor-suppressing CDX1 expression and conversely downregulated oncogenic RAB36 by decoying miR-155-5p and by sequestering HuR, respectively. CONCLUSION: Our findings demonstrate that circPPFIA1s inhibit the liver metastasis of CRC via the miR-155-5p/CDX1 and HuR/RAB36 pathways.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Neoplasias Hepáticas , MicroRNAs , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Neoplasias Colorretais/genética , Proteína Semelhante a ELAV 1/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas de Homeodomínio/genética , Humanos , Neoplasias Hepáticas/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Oligonucleotídeos Antissenso , RNA Circular/genética , Proteínas rab de Ligação ao GTP/metabolismo
6.
J Cell Physiol ; 237(7): 2943-2960, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35491694

RESUMO

Growing evidence indicates that long intergenic noncoding RNAs play an important role in cancer progression by affecting gene regulation at the transcriptional and posttranscriptional levels. Recent studies have shown that long intergenic noncoding RNA functions as a competitive endogenous RNA, which can interact with and mitigate the function of microRNA. In this study, we investigated the molecular mechanism by which LINC00162 regulates cell proliferation and apoptotic cell death. By analyzing RNA sequencing data, LINC00162 was identified to be a target of heterogeneous nuclear ribonucleoprotein K (hnRNPK). HnRNPK positively regulated LINC00162 expression through p38 mitogen-activated protein kinase. Lowering the level of either hnRNPK or LINC00162 decreased proliferation and colony formation while it increased apoptotic cell death. Small RNA sequencing followed by the antisense oligonucleotide pulldown, revealed that LINC00162 interacts directly with miR-485-5p which exhibited tumor-suppressing effects by suppressing cell proliferation and colony formation, and increasing apoptotic cell death. Through the bioinformatic approaches, progestin and adipoQ receptor 4 (PAQR4) was selected as a common target of LINC00162 and miR-485-5p. miR-485-5p decreased the expression of PAQR4 by directly binding to the 3'-untranslated region of PAQR4 messenger RNA. Knockdown of hnRNPK and LINC00162 increased the level of functional miR-485-5p, indicating that LINC00162 may compete for miR-485-5p, thereby derepressing PAQR4 expression. Overexpression of either hnRNPK or LINC00162, or inhibition of miR-485-5p, protected cells against etoposide-induced apoptotic death. Our findings demonstrate that a regulatory paradigm implicating hnRNPK, LINC00162, miR-485-5p, and PAQR4 plays an important role in cell proliferation and apoptosis, and is a promising target for cancer therapeutics.


Assuntos
Proliferação de Células , MicroRNAs , Neoplasias , RNA Longo não Codificante , Regiões 3' não Traduzidas/genética , Apoptose , Linhagem Celular Tumoral , Movimento Celular , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Receptores de Progesterona/metabolismo
7.
Blood ; 138(21): 2117-2128, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34115847

RESUMO

Shwachman-Diamond syndrome (SDS; OMIM #260400) is caused by variants in SBDS (Shwachman-Bodian-Diamond syndrome gene), which encodes a protein that plays an important role in ribosome assembly. Recent reports suggest that recessive variants in EFL1 are also responsible for SDS. However, the precise genetic mechanism that leads to EFL1-induced SDS remains incompletely understood. Here we present 3 unrelated Korean SDS patients who carry biallelic pathogenic variants in EFL1 with biased allele frequencies, resulting from a bone marrow-specific somatic uniparental disomy in chromosome 15. The recombination events generated cells that were homozygous for the relatively milder variant, allowing for the evasion of catastrophic physiologic consequences. However, the milder EFL1 variant was still solely able to impair 80S ribosome assembly and induce SDS features in cell line and animal models. The loss of EFL1 resulted in a pronounced inhibition of terminal oligopyrimidine element-containing ribosomal protein transcript 80S assembly. Therefore, we propose a more accurate pathogenesis mechanism of EFL1 dysfunction that eventually leads to aberrant translational control and ribosomopathy.


Assuntos
Fatores de Alongamento de Peptídeos/genética , Ribonucleoproteína Nuclear Pequena U5/genética , Síndrome de Shwachman-Diamond/genética , Dissomia Uniparental/genética , Adulto , Alelos , Animais , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Camundongos Endogâmicos C57BL , Modelos Moleculares , Mutação Puntual
8.
Adv Sci (Weinh) ; 8(7): 2001308, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33854870

RESUMO

Immunogenic cell death (ICD) is distinguished by the release of tumor-associated antigens (TAAs) and danger-associated molecular patterns (DAMPs). This cell death has been studied in the field of cancer immunotherapy due to the ability of ICD to induce antitumor immunity. Herein, endoplasmic reticulum (ER) stress-mediated ICD inducing fluorinated mitochondria-disrupting helical polypeptides (MDHPs) are reported. The fluorination of the polypeptide provides a high helical structure and potent anticancer ability. This helical polypeptide destabilizes the mitochondrial outer membrane, leading to the overproduction of intracellular reactive oxygen species (ROS) and apoptosis. In addition, this oxidative stress triggers ER stress-mediated ICD. The in vivo results show that cotreatment of fluorinated MDHP and antiprogrammed death-ligand 1 antibodies (αPD-L1) significantly regresses tumor growth and prevents metastasis to the lungs by activating the cytotoxic T cell response and alleviating the immunosuppressive tumor microenvironment. These results indicate that fluorinated MDHP synergizes with the immune checkpoint blockade therapy to eliminate established tumors and to elicit antitumor immune responses.


Assuntos
Adenocarcinoma/tratamento farmacológico , Neoplasias do Colo/tratamento farmacológico , Inibidores de Checkpoint Imunológico/uso terapêutico , Morte Celular Imunogênica/efeitos dos fármacos , Mitocôndrias/metabolismo , Peptídeos/metabolismo , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Terapia Combinada , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Halogenação , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Espécies Reativas de Oxigênio/metabolismo , Linfócitos T Citotóxicos/efeitos dos fármacos
9.
Cell Death Dis ; 12(4): 290, 2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33731671

RESUMO

Malignant characteristics of cancers, represented by rapid cell proliferation and high metastatic potential, are a major cause of high cancer-related mortality. As a multifunctional RNA-binding protein, heterogeneous nuclear ribonucleoprotein K (hnRNPK) is closely associated with cancer progression in various types of cancers. In this study, we sought to identify hnRNPK-regulated long intergenic non-coding RNAs (lincRNAs) that play a critical role in the regulation of cancer malignancy. We found that hnRNPK controlled malignant phenotypes including invasiveness, proliferation, and clonogenicity. RNA sequencing and functional studies revealed that LINC00263, a novel target of hnRNPK, is involved in the oncogenic functions of hnRNPK. Knockdown of LINC00263 mitigated the malignant capabilities. Conversely, increased malignant phenotypes were observed in LINC00263-overexpressing cells. Since LINC00263 was mainly localized in the cytosol and highly enriched in Argonaute 2-immunoprecipitation (Ago2-IP), we hypothesized that LINC00263 acts as a competitive endogenous RNA (ceRNA), and thus sought to identify LINC00263-associated microRNAs. Using small RNA sequencing followed by antisense oligonucleotide pull-down, miR-147a was selected for further study. We found that miR-147a negatively regulates LINC00263 via direct interaction, thus suppressing malignant capabilities. Moreover, knockdown of hnRNPK and LINC00263 upregulated miR-147a, indicating that LINC00263 serves as a ceRNA for miR-147a. By analyzing RNA sequencing data and miRNA target prediction, calpain 2 (CAPN2) was identified as a putative target of miR-147a. Ago2-IP and luciferase reporter assay revealed that miR-147a suppressed CAPN2 expression by directly binding to the 3'UTR of CAPN2 mRNA. In addition, we found that the weakened malignant capabilities following knockdown of hnRNPK or LINC00263 were restored by miR-147a inhibition or CAPN2 overexpression. Furthermore, our findings were validated in various other types of cancer cells including lung cancer, colorectal cancer, neuroblastoma, and melanoma. Collectively, we demonstrate that hnRNPK-regulated LINC00263 plays an important role in cancer malignancy by acting as a miR-147a decoy and thus upregulating CAPN2.


Assuntos
Ribonucleoproteínas Nucleares Heterogêneas Grupo K/metabolismo , MicroRNAs/metabolismo , Oncogenes/genética , Células HeLa , Humanos , Fenótipo , Transfecção
10.
ACS Appl Bio Mater ; 4(12): 8333-8342, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-35005917

RESUMO

Immunogenic cell death (ICD) is a key factor for generating antitumor immunity. Endoplasmic reticulum (ER) stress triggers the release of damage-associated molecular patterns (DAMPs), thus inducing immunogenicity. We developed a polypeptide-based K+ ionophore that perturbed ion homeostasis and elicited a prolonged ER stress. The ER stress not only fosters an oxidative environment that activates mitochondria-dependent apoptosis pathways but also drives immune responses by releasing DAMPs. The ionophore suppressed tumor proliferation in vitro and in vivo based on the pro-apoptotic activity and immunogenicity.


Assuntos
Antineoplásicos , Neoplasias , Alarminas/metabolismo , Antineoplásicos/farmacologia , Humanos , Morte Celular Imunogênica , Imunoterapia , Ionóforos/farmacologia , Neoplasias/tratamento farmacológico , Peptídeos/uso terapêutico
11.
Polymers (Basel) ; 10(8)2018 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-30960755

RESUMO

Stimuli-responsive polypeptides have gained attention because desirable bioactive properties can be easily imparted to them while keeping their biocompatibility and biodegradability intact. In this review, we summarize the most recent advances in various stimuli-responsive polypeptides (pH, reduction, oxidation, glucose, adenosine triphosphate (ATP), and enzyme) over the past five years. Various synthetic strategies exploited for advanced polypeptide-based materials are introduced, and their applicability in biomedical fields is discussed. The recent polypeptides imparted with new stimuli-responsiveness and their novel chemical and physical properties are explained in this review.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA