Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
3.
Cell Death Dis ; 14(7): 422, 2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37443143

RESUMO

ß-arrestin 2 (ARRB2) is functionally implicated in cancer progression via various signaling pathways. However, its role in lung cancer remains unclear. To obtain clinical insight on its function in lung cancer, microarray data from lung tumor tissues (LTTs) and matched lung normal tissues (mLNTs) of primary non-small cell lung cancer (NSCLC) patients (n = 37) were utilized. ARRB2 expression levels were markedly decreased in all 37 LTTs compared to those in matched LNTs of NSCLC patients. They were significantly co-related to enrichment gene sets associated with oncogenic and cancer genes. Importantly, Gene Set Enrichment Analysis (GSEA) between three LTTs with highly down-regulated ARRB2 and three LTTs with lowly down-regulated ARRB2 revealed significant enrichments related to toll-like receptor (TLR) signaling and autophagy genes in three LTTs with highly down-regulated ARRB2, suggesting that ARRB2 was negatively involved in TLR-mediated signals for autophagy induction in lung cancer. Biochemical studies for elucidating the molecular mechanism revealed that ARRB2 interacted with TNF receptor-associated factor 6 (TRAF6) and Beclin 1 (BECN1), thereby inhibiting the ubiquitination of TRAF6-TAB2 to activate NF-κB and TRAF6-BECN1 for autophagy stimulated by TLR3 and TLR4, suggesting that ARRB2 could inhibit the TRAF6-TAB2 signaling axis for NF-κB activation and TRAF6-BECN1 signaling axis for autophagy in response to TLR3 and TLR4. Notably, ARRB2-knockout (ARRB2KO) lung cancer cells exhibited marked enhancements of cancer migration, invasion, colony formation, and proliferation in response to TLR3 and TLR4 stimulation. Altogether, our current data suggest that ARRB2 can negatively regulate lung cancer progression by inhibiting TLR3- and TLR4-induced autophagy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , NF-kappa B/metabolismo , Fator 6 Associado a Receptor de TNF/genética , Fator 6 Associado a Receptor de TNF/metabolismo , Neoplasias Pulmonares/patologia , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Receptor 3 Toll-Like/metabolismo , beta-Arrestina 2/genética , beta-Arrestina 2/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Receptores Toll-Like/metabolismo , Pulmão/metabolismo , Autofagia/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
4.
Cell Biosci ; 13(1): 102, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37287005

RESUMO

BACKGROUND: Free fatty acid receptors (FFARs) and toll-like receptors (TLRs) recognize microbial metabolites and conserved microbial products, respectively, and are functionally implicated in inflammation and cancer. However, whether the crosstalk between FFARs and TLRs affects lung cancer progression has never been addressed. METHODS: We analyzed the association between FFARs and TLRs using The Cancer Genome Atlas (TCGA) lung cancer data and our cohort of non-small cell lung cancer (NSCLC) patient data (n = 42), and gene set enrichment analysis (GSEA) was performed. For the functional analysis, we generated FFAR2-knockout (FFAR2KO) A549 and FFAR2KO H1299 human lung cancer cells and performed biochemical mechanistic studies and cancer progression assays, including migration, invasion, and colony-formation assays, in response to TLR stimulation. RESULTS: The clinical TCGA data showed a significant down-regulation of FFAR2, but not FFAR1, FFAR3, and FFAR4, in lung cancer, and a negative correlation with TLR2 and TLR3. Notably, GSEA showed significant enrichment in gene sets related to the cancer module, the innate signaling pathway, and the cytokine-chemokine signaling pathway in FFAR2DownTLR2UpTLR3Up lung tumor tissues (LTTs) vs. FFAR2upTLR2DownTLR3Down LTTs. Functionally, treatment with propionate (an agonist of FFAR2) significantly inhibited human A549 or H1299 lung cancer migration, invasion, and colony formation induced by TLR2 or TLR3 through the attenuation of the cAMP-AMPK-TAK1 signaling axis for the activation of NF-κB. Moreover, FFAR2KO A549 and FFAR2KO H1299 human lung cancer cells showed marked increases in cell migration, invasion, and colony formation in response to TLR2 or TLR3 stimulation, accompanied by elevations in NF-κB activation, cAMP levels, and the production of C-C motif chemokine ligand (CCL)2, interleukin (IL)-6, and matrix metalloproteinase (MMP) 2 cytokines. CONCLUSION: Our results suggest that FFAR2 signaling antagonized TLR2- and TLR3-induced lung cancer progression via the suppression of the cAMP-AMPK-TAK1 signaling axis for the activation of NF-κB, and its agonist might be a potential therapeutic agent for the treatment of lung cancer.

5.
Int J Mol Sci ; 23(19)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36232695

RESUMO

Bone Marrow Stromal Cell Antigen 2 (BST2) is a type II transmembrane protein expressed on various cell types that tethers the release of viruses. Natural killer (NK) cells express low levels of BST2 under normal conditions but exhibit increased expression of BST2 upon activation. In this study, we show for the first time that murine BST2 can control the cytotoxicity of NK cells. The cytoplasmic tail of murine BST2 contains an immunoreceptor tyrosine-based inhibitory motif (ITIM). The absence of BST2 on NK cells can enhance their cytotoxicity against tumor cells compared to wild type NK cells. NK cells isolated from NZW mice, which express ITIM-deficient BST2, also showed higher cytotoxicity than wild type NK cells. In addition, we found that galectin-8 and galectin-9 were ligands of BST2, since blocking galectin-8 or -9 with monoclonal antibodies enhanced the cytotoxicity of NK cells. These results suggested that BST2 might be a novel NK cell inhibitory receptor as it was involved in regulating NK cell cytotoxicity through its interaction with galectins.


Assuntos
Antígeno 2 do Estroma da Médula Óssea , Citotoxicidade Imunológica , Células Matadoras Naturais , Animais , Anticorpos Monoclonais/imunologia , Antígenos CD/genética , Antígenos CD/imunologia , Antígeno 2 do Estroma da Médula Óssea/genética , Antígeno 2 do Estroma da Médula Óssea/imunologia , Proteínas de Transporte/imunologia , Citotoxicidade Imunológica/genética , Citotoxicidade Imunológica/imunologia , Galectinas/imunologia , Células Matadoras Naturais/imunologia , Ligantes , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/imunologia , Camundongos , Tirosina/metabolismo
7.
Dose Response ; 20(3): 15593258221117349, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36003321

RESUMO

We investigated the effects of low dose rate radiation (LDR) on M1 and M2 macrophages in an ovalbumin-induced mouse model of allergic airway inflammation and asthma. After exposure to LDR (1 Gy, 1.818 mGy/h) for 24 days, mice were euthanized and the changes in the number of M1 and M2 macrophages in the bronchoalveolar lavage fluid and lung, and M2-associated cytokine levels, were assessed. LDR treatment not only restored the M2-rich microenvironment but also ameliorated asthma-related progression in a macrophage-dependent manner. In an ovalbumin-induced mouse model, LDR treatment significantly inhibited M2, but not M1, macrophage infiltration. M2-specific changes in macrophage polarization during chronic lung disease reversed the positive effects of LDR. Moreover, the levels of cytokines, including chemokine (C-C motif) ligand (CCL) 24, CCL17, transforming growth factor beta 1, and matrix metalloproteinase-9, decreased in ovalbumin-sensitized/challenged mice upon exposure to LDR. Collectively, our results indicate that LDR exposure suppressed asthmatic progression, including mucin accumulation, inflammation, and Type 2 T helper (Th2) cytokine (interleukin (IL)-4 and IL-13) production. In conclusion, LDR exposure decreased Th2 cytokine secretion in M2 macrophages, resulting in a reduction in eosinophilic inflammation in ovalbumin-sensitized/challenged mice.

9.
Cell Death Dis ; 13(4): 348, 2022 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-35422093

RESUMO

TNF receptor-associated factor 6 (TRAF6)-BECN1 signaling axis plays a pivotal role in autophagy induction through ubiquitination of BECN1, thereby inducing lung cancer migration and invasion in response to toll-like receptor 4 (TLR4) stimulation. Herein, we provide novel molecular and cellular mechanisms involved in the negative effect of ubiquitin-specific peptidase 15 (USP15) on lung cancer progression. Clinical data of the TCGA and primary non-small cell lung cancer (NSCLC) patients (n = 41) revealed that the expression of USP15 was significantly downregulated in lung cancer patients. Importantly, USP15-knockout (USP15KO) A549 and USP15KO H1299 lung cancer cells generated with CRISPR-Cas9 gene-editing technology showed increases in cancer migration and invasion with enhanced autophagy induction in response to TLR4 stimulation. In addition, biochemical studies revealed that USP15 interacted with BECN1, but not with TRAF6, and induced deubiquitination of BECN1, thereby attenuating autophagy induction. Notably, in primary NSCLC patients (n = 4) with low expression of USP15, 10 genes (CCNE1, MMP9, SFN, UBE2C, CCR2, FAM83A, ETV4, MYO7A, MMP11, and GSDMB) known to promote lung cancer progression were significantly upregulated, whereas 10 tumor suppressor genes (FMO2, ZBTB16, FCN3, TCF21, SFTPA1B, HPGD, SOSTDC1, TMEM100, GDF10, and WIF1) were downregulated, providing clinical relevance of the functional role of USP15 in lung cancer progression. Taken together, our data demonstrate that USP15 can negatively regulate the TRAF6-BECN1 signaling axis for autophagy induction. Thus, USP15 is implicated in lung cancer progression.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Autofagia/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteína Beclina-1/genética , Proteína Beclina-1/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Humanos , Neoplasias Pulmonares/patologia , Proteínas de Membrana , Proteínas de Neoplasias/genética , Fator 6 Associado a Receptor de TNF/genética , Fator 6 Associado a Receptor de TNF/metabolismo , Receptor 4 Toll-Like/metabolismo , Proteases Específicas de Ubiquitina , Ubiquitinação
10.
Int J Oncol ; 56(6): 1405-1416, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32236622

RESUMO

Radiotherapy can induce the infiltration of immune suppressive cells which are involved in promoting tumor progression and recurrence. A number of natural products with immunomodulating abilities have been gaining attention as complementary cancer treatments. This attention is partly due to therapeutic strategies which have proven to be ineffective as a result of tumor­induced immunosuppressive cells found in the tumor microenvironment. The present study investigated whether HS­1793, a resveratrol analogue, can enhance the antitumor effects by inhibiting lymphocyte damage and immune suppression by regulatory T cells (Tregs) and tumor­associated macrophages (TAMs), during radiation therapy. FM3A cells were used to determine the role of HS­1793 in the radiation­induced tumor immunity of murine breast cancer. HS­1793 treatment with radiation significantly increased lymphocyte proliferation with concanavalin A (Con A) stimulation and reduced the DNA damage of lymphocytes in irradiated tumor­bearing mice. The administration of HS­1793 also decreased the number of Tregs, and reduced interleukin (IL)­10 and transforming growth factor (TGF)­ß secretion in irradiated tumor­bearing mice. In addition, HS­1793 treatment inhibited CD206+ TAM infiltration in tumor tissue when compared to the controls or irradiation alone. Mechanistically, HS­1793 suppressed tumor growth via the activation of effector T cells in irradiated mice. On the whole, the findings of the present study reveal that HS­1793 treatment improves the outcome of radiation therapy by enhancing antitumor immunity. Indeed, HS­1793 appears to be a good therapeutic candidate for use in combination with radiotherapy in breast cancer.


Assuntos
Interleucina-10/metabolismo , Neoplasias Mamárias Experimentais/terapia , Naftóis/administração & dosagem , Radiossensibilizantes/administração & dosagem , Resorcinóis/administração & dosagem , Fator de Crescimento Transformador beta/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Quimiorradioterapia , Concanavalina A/farmacologia , Feminino , Neoplasias Mamárias Experimentais/imunologia , Camundongos , Naftóis/farmacologia , Radiossensibilizantes/farmacologia , Resorcinóis/farmacologia , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/efeitos da radiação , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Immunobiology ; 222(1): 55-65, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-26705936

RESUMO

Hypoxia and infiltration of tumor-associated macrophages (TAM) are intrinsic features of the tumor microenvironment. Tumor cells that remain viable in hypoxic conditions often possess an increased survival potential and tend to grow aggressively. TAM also respond to a variety of signals in the hypoxic tumor microenvironment and express a more M2-like phenotype. In this study, the established mouse tumor tissues showed a dense infiltration of CD206+ macrophages at the junctions between the normoxic and hypoxic regions and an increased IL-6 receptor (IL-6R) expression of tumor cells in the areas of CD206+ TAM accumulation, which indicates a role of M2 phenotype TAM in survival adaptation of tumor cells preparing for an impending hypoxic injury before changes in oxygen availability. Cocultured mouse FM3A or human MCF-7 tumor cells with tumor infiltrating macrophages isolated from mouse tumor tissues and M2-polarized macrophages generated from human THP-1 cells, respectively, showed significantly decreased rate of cell death in cultures exposed to hypoxia. The acquisition of survival resistance was attributed to increased IL-6 production by M2 TAM and increased expression of IL-6R in tumor cells in the coculture system. MCF-7 cells cocultured with M2 TAM showed activated JAK1/STAT3 and Raf/MEK/JNK pathways contributing to tyrosine and serine phophorylation of STAT3, respectively. However, only tyrosine phosphorylated STAT3 was detected in the nucleus, which induced upregulation of Bcl-2 and downregulation of Bax and Bak. Finally, knockdown of IL-6R by small interfering RNA significantly counteracted coculture-induced signals and completely abolished the survival resistance to hypoxic injury. Thus, we present evidence for the role of M2 phenotype TAM in IL-6 receptor-mediated signals, particularly tyrosine phosphorylation of STAT3, responsible for the prosurvival adaptation of tumor cells to hypoxia.


Assuntos
Hipóxia/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Receptores de Interleucina-6/metabolismo , Transdução de Sinais , Microambiente Tumoral/imunologia , Animais , Linhagem Celular , Sobrevivência Celular/imunologia , Técnicas de Cocultura , Citocinas/biossíntese , Feminino , Humanos , Células MCF-7 , Camundongos , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/patologia , Fator de Transcrição STAT3/metabolismo
12.
Toxicol Res ; 30(3): 211-20, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25343016

RESUMO

Resveratrol has received considerable attention as a polyphenol with various biological effects such as anti-inflammatory, anti-oxidant, anti-mutagenic, anti-carcinogenic, and cardioprotective properties. As part of the overall safety assessment of HS-1793, a novel resveratrol analogue free from the restriction of metabolic instability and the high dose requirement of resveratrol, we assessed genotoxicity in three in vitro assays: a bacterial mutation assay, a comet assay, and a chromosomal aberration assay. In the bacterial reverse mutation assay, HS-1793 did not increase revertant colony numbers in S. typhimurium strains (TA98, TA100, TA1535 and TA1537) or an E. coli strain (WP2 uvrA) regardless of metabolic activation. HS-1793 showed no evidence of genotoxic activity such as DNA damage on L5178Y Tk(+/-) mouse lymphoma cells with or without the S9 mix in the in vitro comet assay. No statistically significant differences in the incidence of chromosomal aberrations following HS-1793 treatment was observed on Chinese hamster lung cells exposed with or without the S9 mix. These results provide additional evidence that HS-1793 is non-genotoxic at the dose tested in three standard tests and further supports the generally recognized as safe determination of HS-1793 during early drug development.

13.
Int J Mol Med ; 34(5): 1349-57, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25176413

RESUMO

Radiation is an important component of therapy for a wide range of malignant conditions. However, it triggers DNA damage and cell death in normal cells and results in adverse side-effects. Cordyceps militaris (C. militaris), a traditional medicinal mushroom, produces the bioactive compound, cordycepin (3'-deoxyadenosine) and has multiple pharmacological activities, such as antitumor, antimetastatic, antioxidant and immunomodulatory effects. The present study was undertaken to investigate whether CM-AE, an extract obtained from C. militaris exerts protective effects against radiation-induced DNA damage. The protective effects of CM-AE were compared with those of cordycepin. CM-AE effectively increased free radical scavenging activity and decreased radiation-induced plasmid DNA strand breaks in in vitro assays. CM-AE significantly inhibited the generation of reactive oxygen species (ROS) and cellular DNA damage in 2 Gy irradiated Chinese hamster ovary (CHO)-K1 cells. Moreover, treatment with CM-AE induced similar levels of phosphorylated H2AX in the cells, which reflects the initial DNA double-strand breaks in the irradiated cells compared with the non-irradiated CHO-K1 cells. However, cordycepin did not show free radical scavenging activity and did not protect against radiation-induced plasmid DNA or cellular DNA damage. These results suggest that the free radical scavenging activity of CM-AE contributes towards its DNA radioprotective effects and that the protective effects of CM-AE are much more potent to those of cordycepin. The data presented in this study may provide useful information for the screening of potent radioprotective materials.


Assuntos
Cordyceps/química , Protetores contra Radiação/farmacologia , Agaricales/química , Animais , Células CHO , Sobrevivência Celular/efeitos dos fármacos , Ensaio Cometa , Cricetinae , Cricetulus , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/efeitos da radiação , Desoxiadenosinas/farmacologia , Relação Dose-Resposta à Radiação , Raios gama/efeitos adversos , Fosforilação , Espécies Reativas de Oxigênio/metabolismo
14.
Int Immunopharmacol ; 22(2): 303-10, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25042796

RESUMO

Macrophages are capable of both inhibiting and promoting the growth and spread of cancers, depending on their activation state. Tumor-associated macrophages (TAM) are a kind of alternatively activated M2 macrophage, which may contribute to tumor progression. Following our previous study to evaluate the anti-tumor effect of a synthetic resveratrol analog HS-1793, the current study demonstrated that HS-1793 treatment significantly increased IFN-γ secreting cells in splenocytes and decreased CD206+ macrophage infiltration compared to CD68+ cells in the tumor site with a higher expression of IFN-γ. As these results suggested that IFN-γ increased locally at the tumor sites could modulate the status of TAM, we designed an in vitro model to study macrophage morphology and functions in relation to the tumor microenvironment. Human monocytic cell line THP-1 cells stimulated with phorbol-12-myristate-13-acetate (PMA) differentiated to macrophages with M2-like phenotypes. TAM-like properties of CD206(high), CD204(high), IL-10(high), TGF-ß(high), IL-6(low), IL-12(low), VEGF(high), and MMP-9(high) and promotion of tumor cell invasion were more pronounced in M-2-polarized THP-1 macrophages generated by differentiating THP-1 cells with PMA and subsequently polarizing them with Th2 cytokines (IL-4/IL-13). Upon IFN-γ exposure, THP-1-derived TAM changed their phenotypes to the M-1-like morphology and intracellular granular pattern with an expression of an increased level of proinflammatory and immunostimulatory cytokines and a reduced level of immunosuppressive and tumor progressive mediators. These results explain the underlying mechanism of the anti-tumor activity of HS-1793. The elevated level of IFN-γ production after HS-1793 treatment evoked reprogramming of M-2 phenotype TAM, which efficiently countered the immunosuppressive and tumor progressive influences of TAM.


Assuntos
Interferon gama/imunologia , Macrófagos/efeitos dos fármacos , Naftóis/farmacologia , Neoplasias/imunologia , Resorcinóis/farmacologia , Animais , Linhagem Celular Tumoral , Movimento Celular , Feminino , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C3H , Invasividade Neoplásica , Neoplasias/patologia , Resveratrol , Estilbenos
15.
J Radiat Res ; 55(3): 464-75, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24403520

RESUMO

Resveratrol has received considerable attention as a polyphenol with anti-oxidant, anti-carcinogenic, and anti-inflammatory effects. Radiation is an important component of therapy for a wide range of malignant conditions. However, it causes damage to normal cells and, hence, can result in adverse side effects. This study was conducted to examine whether HS-1793, a novel resveratrol analogue free from the restriction of metabolic instability and the high dose requirement of resveratrol, induces a protective effect against radiation-induced DNA damage. HS-1793 effectively scavenged free radicals and inhibited radiation-induced plasmid DNA strand breaks in an in vitro assay. HS-1793 significantly decreased reactive oxygen species and cellular DNA damage in 2 Gy-irradiated Chinese hamster ovary (CHO)-K1 cells. In addition, HS-1793 dose-dependently reduced the levels of phosphorylated H2AX in irradiated CHO-K1 cells. These results indicate that HS-1793 has chemical radioprotective activity. Glutathione levels and superoxide dismutase activity in irradiated CHO-K1 cells increased significantly following HS-1793 treatment. The enhanced biological anti-oxidant activity and chemical radioprotective activity of HS-1793 maintained survival of irradiated CHO-K1 cells in a clonogenic assay. Therefore, HS-1793 may be of value as a radioprotector to protect healthy tissue surrounding tumor cells during radiotherapy to obtain better tumor control with a higher dose.


Assuntos
Sobrevivência Celular/genética , Sobrevivência Celular/efeitos da radiação , Radioisótopos de Césio/farmacologia , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/genética , Naftóis/administração & dosagem , Tolerância a Radiação/fisiologia , Resorcinóis/administração & dosagem , Animais , Células CHO , Sobrevivência Celular/efeitos dos fármacos , Cricetinae , Cricetulus , Relação Dose-Resposta a Droga , Doses de Radiação , Tolerância a Radiação/efeitos dos fármacos , Protetores contra Radiação/administração & dosagem
16.
Cancer Res ; 71(8): 2858-70, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21368092

RESUMO

Effective activation of dendritic cells (DCs) toward T helper (Th)-1 cell polarization would improve DC-based antitumor immunotherapy, helping promote the development of immunotherapeutic vaccines based on T-cell immunity. To achieve this goal, it is essential to develop effective immune adjuvants that can induce powerful Th1 cell immune responses. The pathogenic organism Mycobacterium tuberculosis includes certain constitutes, such as heparin-binding hemagglutinin (HBHA), that possess a strong immunostimulatory potential. In this study, we report the first clarification of the functions and precise mechanism of HBHA in immune stimulation settings relevant to cancer. HBHA induced DC maturation in a TLR4-dependent manner, elevating expression of the surface molecules CD40, CD80, and CD86, MHC classes I and II and the proinflammatory cytokines IL-6, IL-12, IL-1ß, TNF-α, and CCR7, as well as stimulating the migratory capacity of DCs in vitro and in vivo. Mechanistic investigations established that MyD88 and TRIF signaling pathways downstream of TLR4 mediated secretion of HBHA-induced proinflammatory cytokines. HBHA-treated DCs activated naïve T cells, polarized CD4(+) and CD8(+) T cells to secrete IFN-γ, and induced T-cell-mediated cytotoxicity. Notably, systemic administration of DCs that were HBHA-treated and OVA(251-264)-pulsed ex vivo greatly strengthened immune priming in vivo, inducing a dramatic regression of tumor growth associated with long-term survival in a murine E.G7 thymoma model. Together, our findings highlight HBHA as an immune adjuvant that favors Th1 polarization and DC function for potential applications in DC-based antitumor immunotherapy.


Assuntos
Vacinas Anticâncer/farmacologia , Lectinas/farmacologia , Mycobacterium tuberculosis/imunologia , Timoma/terapia , Receptor 4 Toll-Like/agonistas , Animais , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/imunologia , Células Dendríticas/imunologia , Sinergismo Farmacológico , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Nus , Camundongos Transgênicos , Transdução de Sinais , Linfócitos T Citotóxicos/efeitos dos fármacos , Linfócitos T Citotóxicos/imunologia , Timoma/imunologia , Timoma/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/imunologia , Receptor Toll-Like 9/imunologia , Receptor Toll-Like 9/metabolismo
17.
BMC Microbiol ; 10: 263, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20950448

RESUMO

BACKGROUND: Typhoid, which is caused by Salmonella enterica serovar Typhimurium, remains a major health concern worldwide. Multidrug-resistant strains of Salmonella have emerged which exhibit increased survivability and virulence, thus leading to increased morbidity. However, little is known about the protective immune response against this microorganism. The outer membrane protein (Omp)A of bacteria plays an important role in pathogenesis. RESULTS: We purified OmpA from S. enterica serovar Typhimurium (OmpA-sal) and characterized the role of OmpA-sal in promoting adaptive and innate immune responses. OmpA-sal functionally activated bone marrow-derived dendritic cells by augmenting expression of CD80, CD86, and major histocompatibility complex classes I and II. Interestingly, OmpA-sal induced production of interferon-γ from T cells in mixed lymphocyte reactions, thus indicating Th1-polarizing capacity. The expression of surface markers and cytokine production in dendritic cells was mediated by the TLR4 signaling pathway in a TLR4 Knock-out system. CONCLUSIONS: Our findings suggest that OmpA-sal modulates the adaptive immune responses to S. enterica serovar Typhimurium by activating dendritic cells and driving Th1 polarization, which are important properties to consider in the development of effective S. enterica serovar Typhimurium vaccines and immunotherapy adjuvant.


Assuntos
Proteínas da Membrana Bacteriana Externa/imunologia , Células Dendríticas/imunologia , Salmonella typhimurium/imunologia , Células Th1/imunologia , Animais , Proteínas da Membrana Bacteriana Externa/metabolismo , Células da Medula Óssea/metabolismo , Células Dendríticas/metabolismo , Farmacorresistência Bacteriana Múltipla , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Classe II/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Salmonelose Animal/imunologia , Salmonelose Animal/metabolismo
18.
Int Immunopharmacol ; 10(7): 760-8, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20399909

RESUMO

Indoleamine 2,3-dioxygenase (IDO), a key enzyme that catalyzes the initial, rate-limiting step in tryptophan degradation, is expressed in dendritic cells (DCs) which are stimulated by lipopolysaccharide (LPS) or interferons. In this study we show that curcumin inhibits IDO expression in vitro and in vivo in DCs, leading to the suppression of LPS-induced DC maturation. The effect of curcumin relative to LPS is not limited to the above, as it also enhances LPS-induced expression of cyclooxygenase (COX)-2 and production of prostaglandin E2 (PGE2). Additionally, PGE2 diminished the LPS-induced IDO expression in DCs, thereby contributing to the inhibition of expression of the surface molecules (CD80, CD86 and MHC class I) and the production of the proinflammatory cytokines (IL-12 p70 and TNF-alpha) by LPS stimulation. Under our experimental conditions, curcumin plays an immunomodulatory role by downregulating IDO expression via a COX-2/PGE2-dependant pathway, thus impacting DC maturation in vitro and in vivo.


Assuntos
Curcumina/farmacologia , Ciclo-Oxigenase 2/metabolismo , Células Dendríticas/efeitos dos fármacos , Dinoprostona/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Animais , Antígenos de Diferenciação/genética , Antígenos de Diferenciação/metabolismo , Medula Óssea/patologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Células Cultivadas , Curcumina/administração & dosagem , Ciclo-Oxigenase 2/genética , Citocinas/genética , Citocinas/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Células Dendríticas/patologia , Imunomodulação , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Lipopolissacarídeos/imunologia , Lipopolissacarídeos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA