Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
JAMA Neurol ; 79(8): 808-816, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35696196

RESUMO

Importance: Immune-mediated rippling muscle disease (iRMD) is a rare myopathy characterized by wavelike muscle contractions (rippling) and percussion- or stretch-induced muscle mounding. A serological biomarker of this disease is lacking. Objective: To describe a novel autoantibody biomarker of iRMD and report associated clinicopathological characteristics. Design, Setting, and Participants: This retrospective cohort study evaluated archived sera from 10 adult patients at tertiary care centers at the Mayo Clinic, Rochester, Minnesota, and Brigham & Women's Hospital, Boston, Massachusetts, who were diagnosed with iRMD by neuromuscular specialists in 2000 and 2021, based on the presence of electrically silent percussion- or stretch-induced muscle rippling and percussion-induced rapid muscle contraction with or without muscle mounding and an autoimmune basis. Sera were evaluated for a common biomarker using phage immunoprecipitation sequencing. Myopathology consistent with iRMD was documented in most patients. The median (range) follow-up was 18 (1-30) months. Exposures: Diagnosis of iRMD. Main Outcomes and Measures: Detection of a common autoantibody in serum of patients sharing similar clinical and myopathological features. Results: Seven male individuals and 3 female individuals with iRMD were identified (median [range] age at onset, 60 [18-76] years). An IgG autoantibody specific for caveolae-associated protein 4 (cavin-4) was identified in serum of patients with iRMD using human proteome phage immunoprecipitation sequencing. Immunoassays using recombinant cavin-4 confirmed cavin-4 IgG seropositivity in 8 of 10 patients with iRMD. Results for healthy and disease-control individuals (n = 241, including myasthenia gravis and immune-mediated myopathies) were cavin-4 IgG seronegative. Six of the 8 individuals with cavin-4 IgG were male, and the median (range) age was 60 (18-76) years. Initial symptoms included rippling of lower limb muscles in 5 of 8 individuals or all limb muscles in 2 of 8 sparing bulbar muscles, fatigue in 9 of 10, mild proximal weakness in 3 of 8, and isolated myalgia in 1 of 8, followed by development of diffuse rippling. All patients had percussion-induced muscle rippling and half had percussion- or stretch-induced muscle mounding. Four of the 10 patients had proximal weakness. Plasma creatine kinase was elevated in all but 1 patient. Six of the 10 patients underwent malignancy screening; cancer was detected prospectively in only 1. Muscle biopsy was performed in 7 of the 8 patients with cavin-4 IgG; 6 of 6 specimens analyzed immunohistochemically revealed a mosaic pattern of sarcolemmal cavin-4 immunoreactivity. Three of 6 patients whose results were seropositive and who received immunotherapy had complete resolution of symptoms, 1 had mild improvement, and 2 had no change. Conclusions and Relevance: The findings indicate that cavin-4 IgG may be the first specific serological autoantibody biomarker identified in iRMD. Depletion of cavin-4 expression in muscle biopsies of patients with iRMD suggests the potential role of this autoantigen in disease pathogenesis.


Assuntos
Doenças Musculares , Miastenia Gravis , Adulto , Idoso , Autoanticorpos , Biomarcadores , Cavéolas/metabolismo , Cavéolas/patologia , Feminino , Humanos , Imunoglobulina G , Masculino , Pessoa de Meia-Idade , Doenças Musculares/metabolismo , Miastenia Gravis/diagnóstico , Estudos Retrospectivos
2.
J Proteome Res ; 21(1): 142-150, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34779632

RESUMO

COVID-19 vaccines are becoming more widely available, but accurate and rapid testing remains a crucial tool for slowing the spread of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) virus. Although the quantitative reverse transcription-polymerase chain reaction (qRT-PCR) remains the most prevalent testing methodology, numerous tests have been developed that are predicated on detection of the SARS-CoV-2 nucleocapsid protein, including liquid chromatography-tandem mass spectrometry (LC-MS/MS) and immunoassay-based approaches. The continuing emergence of SARS-CoV-2 variants has complicated these approaches, as both qRT-PCR and antigen detection methods can be prone to missing viral variants. In this study, we describe several COVID-19 cases where we were unable to detect the expected peptide targets from clinical nasopharyngeal swabs. Whole genome sequencing revealed that single nucleotide polymorphisms in the gene encoding the viral nucleocapsid protein led to sequence variants that were not monitored in the targeted assay. Minor modifications to the LC-MS/MS method ensured detection of the variants of the target peptide. Additional nucleocapsid variants could be detected by performing the bottom-up proteomic analysis of whole viral genome-sequenced samples. This study demonstrates the importance of considering variants of SARS-CoV-2 in the assay design and highlights the flexibility of mass spectrometry-based approaches to detect variants as they evolve.


Assuntos
COVID-19 , SARS-CoV-2 , Vacinas contra COVID-19 , Cromatografia Líquida , Humanos , Nucleocapsídeo/genética , Peptídeos , Proteômica , Espectrometria de Massas em Tandem
3.
Clin Pharmacol Ther ; 104(4): 709-718, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29327356

RESUMO

Deleterious variants in dihydropyrimidine dehydrogenase (DPD, DPYD gene) can be highly predictive of clinical toxicity to the widely prescribed chemotherapeutic 5-fluorouracil (5-FU). However, there are very limited data pertaining to the functional consequences of the >450 reported no-synonymous DPYD variants. We developed a DPYD-specific variant classifier (DPYD-Varifier) using machine learning and in vitro functional data for 156 missense DPYD variants. The developed model showed 85% accuracy and outperformed other in silico prediction tools. An examination of feature importance within the model provided additional insight into functional aspects of the DPD protein relevant to 5-FU toxicity. In the absence of clinical data for unstudied variants, prediction tools like DPYD-Varifier have great potential to individualize medicine and improve the clinical decision-making process.


Assuntos
Antimetabólitos Antineoplásicos/toxicidade , Simulação por Computador , Di-Hidrouracila Desidrogenase (NADP)/genética , Fluoruracila/toxicidade , Aprendizado de Máquina , Mutação de Sentido Incorreto , Farmacogenética/métodos , Testes Farmacogenômicos/métodos , Variantes Farmacogenômicos , Antimetabólitos Antineoplásicos/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Di-Hidrouracila Desidrogenase (NADP)/química , Di-Hidrouracila Desidrogenase (NADP)/metabolismo , Relação Dose-Resposta a Droga , Fluoruracila/metabolismo , Frequência do Gene , Genótipo , Células HCT116 , Células HEK293 , Humanos , Concentração Inibidora 50 , Modelos Moleculares , Valor Preditivo dos Testes , Conformação Proteica , Medição de Risco , Relação Estrutura-Atividade
4.
J Biol Chem ; 291(52): 26875-26885, 2016 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-27875297

RESUMO

Uracil N-glycosylase 2 (UNG2), the nuclear isoform of UNG, catalyzes the removal of uracil or 5-fluorouracil lesions that accumulate in DNA following treatment with the anticancer agents 5-fluorouracil and 5-fluorodeoxyuridine (floxuridine), a 5-fluorouracil metabolite. By repairing these DNA lesions before they can cause cell death, UNG2 promotes cancer cell survival and is therefore critically involved in tumor resistance to these agents. However, the mechanisms by which UNG2 is regulated remain unclear. Several phosphorylation sites within the N-terminal regulatory domain of UNG2 have been identified, although the effects of these modifications on UNG2 function have not been fully explored, nor have the identities of the kinases involved been determined. Here we show that glycogen synthase kinase 3 (GSK-3) interacts with and phosphorylates UNG2 at Thr60 and that Thr60 phosphorylation requires a Ser64 priming phosphorylation event. We also show that mutating Thr60 or Ser64 to Ala increases the half-life of UNG2, reduces the rate of in vitro uracil excision, and slows UNG2 dissociation from chromatin after DNA replication. Using an UNG2-deficient ovarian cancer cell line that is hypersensitive to floxuridine, we show that GSK-3 phosphorylation facilitates UNG2-dependent repair of floxuridine-induced DNA lesions and promotes tumor cell survival following exposure to this agent. These data suggest that GSK-3 regulates UNG2 and promotes DNA damage repair.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , DNA Glicosilases/metabolismo , Reparo do DNA/efeitos dos fármacos , Quinase 3 da Glicogênio Sintase/metabolismo , Neoplasias Ovarianas/patologia , Antimetabólitos Antineoplásicos/farmacologia , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Núcleo Celular/patologia , DNA Glicosilases/genética , Replicação do DNA/efeitos dos fármacos , Feminino , Floxuridina/farmacologia , Fluoruracila/farmacologia , Quinase 3 da Glicogênio Sintase/genética , Humanos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Fosforilação , Células Tumorais Cultivadas
5.
Cancer Res ; 76(21): 6362-6373, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27578004

RESUMO

The antimetabolite 5-fluorouracil (5-FU) is one of the most widely used chemotherapy drugs. Dihydropyrimidine dehydrogenase (DPD) is a major determinant of 5-FU response and toxicity. Although DPYD variants may affect 5-FU metabolism, they do not completely explain the reported variability in DPD function or the resultant differences in treatment response. Here, we report that H3K27 trimethylation (H3K27me3) at the DPYD promoter regulated by Ezh2 and UTX suppresses DPYD expression by inhibiting transcription factor PU.1 binding, leading to increased resistance to 5-FU. Enrichment of H3K27me3 at the DPYD promoter was negatively correlated with both DPYD expression and DPD enzyme activity in peripheral blood specimens from healthy volunteers. Lastly, tumor expression data suggest that DPYD repression by Ezh2 predicts poor survival in 5-FU-treated cancers. Collectively, the findings of the present article suggest that a previously uncharacterized mechanism regulates DPD expression and may contribute to tumor resistance to 5-FU. Cancer Res; 76(21); 6362-73. ©2016 AACR.


Assuntos
Di-Hidrouracila Desidrogenase (NADP)/genética , Fluoruracila/farmacologia , Histonas/metabolismo , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Transativadores/antagonistas & inibidores , Resistencia a Medicamentos Antineoplásicos , Proteína Potenciadora do Homólogo 2 de Zeste/fisiologia , Humanos , Metilação , Proteínas Proto-Oncogênicas/metabolismo , Transativadores/metabolismo , Células Tumorais Cultivadas
6.
Mol Cancer Ther ; 13(3): 742-51, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24401318

RESUMO

Dihydropyrimidine dehydrogenase (DPD, encoded by DPYD) is the rate-limiting enzyme in the uracil catabolic pathway and has a pivotal role in the pharmacokinetics of the commonly prescribed anticancer drug 5-fluorouracil (5-FU). Deficiency of DPD, whether due to inadequate expression or deleterious variants in DPYD, has been linked to severe toxic responses to 5-FU. Little is known about the mechanisms governing DPD expression in the liver. In this report, we show increased accumulation of RNA-induced silencing complex (RISC) proteins on DPYD mRNA in cells overexpressing the highly homologous microRNAs (miRNA) miR-27a and miR-27b. These miRNAs were shown to repress DPD expression through two conserved recognition sites in DPYD. The IC50 of 5-FU for HCT116 cells overexpressing miR-27a or miR-27b was 4.4 µmol/L (both), significantly lower than that for cells expressing a nontargeting (scramble) control miRNA (14.3 µmol/L; P = 3.3 × 10(-5) and P = 1.5 × 10(-7), respectively). Mouse liver DPD enzyme activity was inversely correlated with expression levels of miR-27a (R(2) = 0.49; P = 0.0012) and miR-27b (R(2) = 0.29; P = 0.022). A common variant in the hairpin loop region of hsa-mir-27a (rs895819) was also shown to be associated with elevated expression of the miR-27a in a panel of cell lines (P = 0.029) and in a transgenic overexpression model (P = 0.0011). Furthermore, rs895819 was associated with reduced DPD enzyme activity (P = 0.028) in a cohort of 40 healthy volunteers. Taken together, these results suggest that miR-27a and miR-27b expression may be pharmacologically relevant modulators of DPD enzyme function in the liver. Furthermore, our data suggest that rs895819 may be a potential risk allele for 5-FU sensitivity.


Assuntos
Deficiência da Di-Hidropirimidina Desidrogenase/genética , Di-Hidrouracila Desidrogenase (NADP)/biossíntese , Fluoruracila/efeitos adversos , MicroRNAs/genética , Animais , Sítios de Ligação , Deficiência da Di-Hidropirimidina Desidrogenase/metabolismo , Fluoruracila/administração & dosagem , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Fígado/enzimologia , Camundongos , Neoplasias/complicações , Neoplasias/tratamento farmacológico
7.
Biochim Biophys Acta ; 1833(12): 2953-2960, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23899746

RESUMO

Exogenous brain-derived neurotrophic factor (BDNF) enhances Ca(2+) signaling and cell proliferation in human airway smooth muscle (ASM), especially with inflammation. Human ASM also expresses BDNF, raising the potential for autocrine/paracrine effects. The mechanisms by which ASM BDNF secretion occurs are not known. Transient receptor potential channels (TRPCs) regulate a variety of intracellular processes including store-operated Ca(2+) entry (SOCE; including in ASM) and secretion of factors such as cytokines. In human ASM, we tested the hypothesis that TRPC3 regulates BDNF secretion. At baseline, intracellular BDNF was present, and BDNF secretion was detectable by enzyme linked immunosorbent assay (ELISA) of cell supernatants or by real-time fluorescence imaging of cells transfected with GFP-BDNF vector. Exposure to the pro-inflammatory cytokine tumor necrosis factor-alpha (TNFα) (20ng/ml, 48h) or a mixture of allergens (ovalbumin, house dust mite, Alternaria, and Aspergillus extracts) significantly enhanced BDNF secretion and increased TRPC3 expression. TRPC3 knockdown (siRNA or inhibitor Pyr3; 10µM) blunted BDNF secretion, and prevented inflammation effects. Chelation of extracellular Ca(2+) (EGTA; 1mM) or intracellular Ca(2+) (BAPTA; 5µM) significantly reduced secreted BDNF, as did the knockdown of SOCE proteins STIM1 and Orai1 or plasma membrane caveolin-1. Functionally, secreted BDNF had autocrine effects suggested by phosphorylation of high-affinity tropomyosin-related kinase TrkB receptor, prevented by chelating extracellular BDNF with chimeric TrkB-Fc. These data emphasize the role of TRPC3 and Ca(2+) influx in the regulation of BDNF secretion by human ASM and the enhancing effects of inflammation. Given the BDNF effects on Ca(2+) and cell proliferation, BDNF secretion may contribute to altered airway structure and function in diseases such as asthma.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Músculo Liso/metabolismo , Sistema Respiratório/patologia , Canais de Cátion TRPC/metabolismo , Cálcio/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Humanos , Inflamação/patologia , Músculo Liso/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Proteínas Recombinantes de Fusão/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA