Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Radiat Res ; 193(1): 88-94, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31738662

RESUMO

Radiation-induced cancer is an ongoing and significant problem, with sources that include clinics worldwide in which 3.1 billion radiology exams are performed each year, as well as a variety of other scenarios such as space travel and nuclear cleanup. These radiation exposures are typically anticipated, and the exposure is typically well below 1 Gy. When radiation-induced (actually ROS-induced) DNA mutation is prevented, then so too are downstream radiation-induced cancers. Currently, there is no protection available against the effects of such <1 Gy radiation exposures. In this study, we address whether the new PrC-210 ROS-scavenger is effective in protecting p53-deficient (p53-/-) mice against X-ray-induced accelerated tumor mortality; this is the most sensitive radiation tumorigenesis model currently known. Six-day-old p53-/- pups received a single intraperitoneal PrC-210 dose [0.5 maximum tolerated dose (MTD)] or vehicle, and 25 min later, pups received 4.0 Gy X-ray irradiation. At 5 min postirradiation, blood was collected to quantify white blood cell c-H2AX foci. Over the next 250 days, tumor-associated deaths were recorded. Findings revealed that when administered 25 min before 4 Gy X-ray irradiation, PrC-210 reduced DNA damage (c-H2AX foci) by 40%, and in a notable coincidence, caused a 40% shift in tumor latency/incidence, and the 0.5 MTD PrC210 dose had no discernible toxicities in these p53-/- mice. Essentially, the moles of PrC-210 thiol within a single 0.5 MTD PrC-210 dose suppressed the moles of ROS generated by 40% of the 4 Gy X-ray dose administered to p53-/- pups, and in doing so, eliminated the lifetime leukemia/lymphoma risk normally residing "downstream" of that 40% of the 4 Gy dose. In conclusion: 1. PrC-210 is readily tolerated by the 6-day-old p53-/- mice, with no discernible lifetime toxicities; 2. PrC-210 does not cause the nausea, emesis or hypotension that preclude clinical use of earlier aminothiols; and 3. PrC-210 significantly increased survival after 4 Gy irradiation in the p53-/- mouse model.


Assuntos
Diaminas/farmacologia , Neoplasias Induzidas por Radiação/mortalidade , Protetores contra Radiação/farmacologia , Compostos de Sulfidrila/farmacologia , Proteína Supressora de Tumor p53/deficiência , Animais , Carcinogênese/efeitos dos fármacos , Carcinogênese/efeitos da radiação , Dano ao DNA , Diaminas/sangue , Feminino , Humanos , Recém-Nascido , Masculino , Camundongos , Neoplasias Induzidas por Radiação/genética , Neoplasias Induzidas por Radiação/patologia , Neoplasias Induzidas por Radiação/prevenção & controle , Protetores contra Radiação/metabolismo , Compostos de Sulfidrila/sangue
2.
Radiat Res ; 190(2): 133-141, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29781766

RESUMO

While computed tomography (CT) is now commonly used and considered to be clinically valuable, significant DNA double-strand breaks (γ-H2AX foci) in white blood cells from adult and pediatric CT patients have been frequently reported. In this study to determine whether γ-H2AX foci and X-ray-induced naked DNA damage are suppressed by administration of the PrC-210 radioprotector, human blood samples were irradiated in a CT scanner at 50-150 mGy with or without PrC-210, and γ-H2AX foci were scored. X-ray-induced naked DNA damage was also studied, and the DNA protective efficacy of PrC-210 was compared against 12 other common "antioxidants." PrC-210 reduced CT radiation-induced γ-H2AX foci in white blood cells to near background ( P < 0.0001) at radiation doses of 50-150 mGy. PrC-210 was most effective among the 13 "antioxidants" in reducing naked DNA X-ray damage, and its addition at 30 s before an •OH pulse reduced to background the •OH insult that otherwise induced >95% DNA damage. A systemic PrC-210 dose known to confer 100% survival in irradiated mice had no discernible effect on micro-CT image signal-to-noise ratio and CT image integrity. PrC-210 suppressed DNA damage to background or near background in each of these assay systems, thus supporting its development as a radioprotector for humans in multiple radiation exposure settings.


Assuntos
Células Sanguíneas/efeitos dos fármacos , Células Sanguíneas/efeitos da radiação , Dano ao DNA , Diaminas/farmacologia , Protetores contra Radiação/farmacologia , Compostos de Sulfidrila/farmacologia , Tomografia Computadorizada por Raios X/efeitos adversos , Animais , Células Sanguíneas/metabolismo , Relação Dose-Resposta a Droga , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Doses de Radiação , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA