Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 334: 122153, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37442331

RESUMO

Altered DNA methylation (DNAm) might be a biological intermediary in the pathway from smoking to lung cancer. In this study, we investigated the contribution of differential blood DNAm to explain the association between smoking and lung cancer incidence. Blood DNAm was measured in 2321 Strong Heart Study (SHS) participants. Incident lung cancer was assessed as time to event diagnoses. We conducted mediation analysis, including validation with DNAm and paired gene expression data from the Framingham Heart Study (FHS). In the SHS, current versus never smoking and pack-years single-mediator models showed, respectively, 29 and 21 differentially methylated positions (DMPs) for lung cancer with statistically significant mediated effects (14 of 20 available, and five of 14 available, positions, replicated, respectively, in FHS). In FHS, replicated DMPs showed gene expression downregulation largely in trans, and were related to biological pathways in cancer. The multimediator model identified that DMPs annotated to the genes AHRR and IER3 jointly explained a substantial proportion of lung cancer. Thus, the association of smoking with lung cancer was partly explained by differences in baseline blood DNAm at few relevant sites. Experimental studies are needed to confirm the biological role of identified eQTMs and to evaluate potential implications for early detection and control of lung cancer.


Assuntos
Metilação de DNA , Neoplasias Pulmonares , Humanos , Fumar/epidemiologia , Fumar Tabaco/genética , Neoplasias Pulmonares/epidemiologia , Neoplasias Pulmonares/genética , Sequência de Bases , Epigênese Genética
2.
Int J Biostat ; 17(2): 191-221, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32990647

RESUMO

Mediation analysis aims at disentangling the effects of a treatment on an outcome through alternative causal mechanisms and has become a popular practice in biomedical and social science applications. The causal framework based on counterfactuals is currently the standard approach to mediation, with important methodological advances introduced in the literature in the last decade, especially for simple mediation, that is with one mediator at the time. Among a variety of alternative approaches, Imai et al. showed theoretical results and developed an R package to deal with simple mediation as well as with multiple mediation involving multiple mediators conditionally independent given the treatment and baseline covariates. This approach does not allow to consider the often encountered situation in which an unobserved common cause induces a spurious correlation between the mediators. In this context, which we refer to as mediation with uncausally related mediators, we show that, under appropriate hypothesis, the natural direct and joint indirect effects are non-parametrically identifiable. Moreover, we adopt the quasi-Bayesian algorithm developed by Imai et al. and propose a procedure based on the simulation of counterfactual distributions to estimate not only the direct and joint indirect effects but also the indirect effects through individual mediators. We study the properties of the proposed estimators through simulations. As an illustration, we apply our method on a real data set from a large cohort to assess the effect of hormone replacement treatment on breast cancer risk through three mediators, namely dense mammographic area, nondense area and body mass index.


Assuntos
Análise de Mediação , Modelos Estatísticos , Teorema de Bayes , Causalidade , Estudos de Coortes , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA