RESUMO
The skeletons of marine sponges are ancient biocomposite structures in which mineral phases are formed on 3D organic matrices. In addition to calcium- and silicate-containing biominerals, iron ions play an active role in skeleton formation in some species of bath sponges in the marine environment, which is a result of the biocorrosion of the metal structures on which these sponges settle. The interaction between iron ions and biopolymer spongin has motivated the development of selected extreme biomimetics approaches with the aim of creating new functional composites to use in environmental remediation and as adsorbents for heavy metals. In this study, for the first time, microporous 3D spongin scaffolds isolated from the cultivated marine bath sponge Hippospongia communis were used for electro-assisted deposition of iron oxides such as goethite [α-FeO(OH)] and lepidocrocite [γ-FeO(OH)]. The obtained iron oxide phases were characterized with the use of scanning electron microscopy, FTIR, and X-ray diffraction. In addition, mechanisms of electro-assisted deposition of iron oxides on the surface of spongin, as a sustainable biomaterial, are proposed and discussed.
RESUMO
Shape memory and self-healing polymer nanocomposites have attracted considerable attention due to their modifiable properties and promising applications. The incorporation of nanomaterials (polypyrrole, carboxyl methyl cellulose, carbon nanotubes, titania nanotubes, graphene, graphene oxide, mesoporous silica) into these polymers has significantly enhanced their performance, opening up new avenues for diverse applications. The self-healing capability in polymer nanocomposites depends on several factors, including heat, quadruple hydrogen bonding, π-π stacking, Diels-Alder reactions, and metal-ligand coordination, which collectively govern the interactions within the composite materials. Among possible interactions, only quadruple hydrogen bonding between composite constituents has been shown to be effective in facilitating self-healing at approximately room temperature. Conversely, thermo-responsive self-healing and shape memory polymer nanocomposites require elevated temperatures to initiate the healing and recovery processes. Thermo-responsive (TRSMPs), light-actuated, magnetically actuated, and Electrically actuated Shape Memory Polymer Nanocomposite are discussed. This paper provides a comprehensive overview of the different types of interactions involved in SMP and SHP nanocomposites and examines their behavior at both room temperature and elevated temperature conditions, along with their biomedical applications. Among many applications of SMPs, special attention has been given to biomedical (drug delivery, orthodontics, tissue engineering, orthopedics, endovascular surgery), aerospace (hinges, space deployable structures, morphing aircrafts), textile (breathable fabrics, reinforced fabrics, self-healing electromagnetic interference shielding fabrics), sensor, electrical (triboelectric nanogenerators, information energy storage devices), electronic, paint and self-healing coating, and construction material (polymer cement composites) applications.
RESUMO
Herein, we present a novel biosensor based on nature-inspired poly(caffeic acid) (PCA) grafted to magnetite (Fe3O4) nanoparticles with glucose oxidase (GOx) from Aspergillus niger via adsorption technique. The biomolecular corona was applied to the fabrication of a biosensor system with a screen-printed electrode (SPE). The obtained results indicated the operation of the system at a low potential (0.1 V). Then, amperometric measurements were performed to optimize conditions like various pH and temperatures. The SPE/Fe3O4@PCA-GOx biosensor presented a linear range from 0.05 mM to 25.0 mM, with a sensitivity of 1198.0 µA mM-1 cm-2 and a limit of detection of 5.23 µM, which was compared to other biosensors presented in the literature. The proposed system was selective towards various interferents (maltose, saccharose, fructose, L-cysteine, uric acid, dopamine and ascorbic acid) and shows high recovery in relation to tests on real samples, up to 10 months of work stability. Moreover, the Fe3O4@PCA-GOx biomolecular corona has been characterized using various techniques such as Fourier transform infrared spectroscopy (FTIR), high-resolution transmission electron microscopy (HRTEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and Bradford assay.
Assuntos
Técnicas Biossensoriais , Glucose , Glucose/química , Enzimas Imobilizadas/química , Ácidos Cafeicos , Técnicas Biossensoriais/métodos , Glucose Oxidase/química , Eletrodos , Técnicas EletroquímicasRESUMO
Marine sponges of the subclass Keratosa originated on our planet about 900 million years ago and represent evolutionarily ancient and hierarchically structured biological materials. One of them, proteinaceous spongin, is responsible for the formation of 3D structured fibrous skeletons and remains enigmatic with complex chemistry. The objective of this study was to investigate the interaction of spongin with iron ions in a marine environment due to biocorrosion, leading to the occurrence of lepidocrocite. For this purpose, a biomimetic approach for the development of a new lepidocrocite-containing 3D spongin scaffold under laboratory conditions at 24 °C using artificial seawater and iron is described for the first time. This method helps to obtain a new composite as "Iron-Spongin", which was characterized by infrared spectroscopy and thermogravimetry. Furthermore, sophisticated techniques such as X-ray fluorescence, microscope technique, and X-Ray diffraction were used to determine the structure. This research proposed a corresponding mechanism of lepidocrocite formation, which may be connected with the spongin amino acids functional groups. Moreover, the potential application of the biocomposite as an electrochemical dopamine sensor is proposed. The conducted research not only shows the mechanism or sensor properties of "Iron-spongin" but also opens the door to other applications of these multifunctional materials.
Assuntos
Ferro , Poríferos , Animais , Biomimética , DopaminaRESUMO
Life on earth is dependent on clean water, which is crucial for survival. Water supplies are getting contaminated due to the growing human population and its associated industrialization, urbanization, and chemically improved agriculture. Currently, a large number of people struggle to find clean drinking water, a problem that is particularly serious in developing countries. To meet the enormous demand of clean water around the world, there is an urgent need of advanced technologies and materials that are affordable, easy to use, thermally efficient, portable, environmentally benign, and chemically durable. Physical, chemical and biological methods are used to eliminate insoluble materials and soluble pollutants from wastewater. In addition to cost, each treatment carries its limitations in terms of effectiveness, productivity, environmental effect, sludge generation, pre-treatment demands, operating difficulties, and the creation of potentially hazardous byproducts. To overcome the problems of traditional methods, porous polymers have distinguished themselves as practical and efficient materials for the treatment of wastewater because of their distinctive characteristics such as large surface area, chemical versatility, biodegradability, and biocompatibility. This study overviews improvement in manufacturing methods and the sustainable usage of porous polymers for wastewater treatment and explicitly discusses the efficiency of advanced porous polymeric materials for the removal of emerging pollutants viz. pesticides, dyes, and pharmaceuticals whereby adsorption and photocatalytic degradation are considered to be among the most promising methods for their effective removal. Porous polymers are considered excellent adsorbents for the mitigation of these pollutants as they are cost-effective and have greater porosities to facilitate penetration and adhesion of pollutants, thus enhance their adsorption functionality. Appropriately functionalized porous polymers can offer the potential to eliminate hazardous chemicals and making water useful for a variety of purposes thus, numerous types of porous polymers have been selected, discussed and compared especially in terms of their efficiencies against specific pollutants. The study also sheds light on numerous challenges faced by porous polymers in the removal of contaminants, their solutions and some associated toxicity issues.
Assuntos
Poluentes Ambientais , Praguicidas , Poluentes Químicos da Água , Purificação da Água , Humanos , Águas Residuárias , Porosidade , Adsorção , Corantes , Polímeros , Purificação da Água/métodos , Preparações Farmacêuticas , Poluentes Químicos da Água/análiseRESUMO
Mercury emissions from the industrial sector have become an undeniable concern for researchers due to their toxic health effects. Efforts have been made to develop green, efficient, and reliable methods for removal of mercury from wastewater. Sorption process promises fruitful results for the decontamination of cations from wastewater. Among the number of used sorbents, metal sulfides have been emerged as an appropriate material for removing toxic metals that possess good affinity due to sulfur-based active sites for Hg through "Lewis's acid-based soft-soft interactions." Herein, nickel-sulfide nanoparticles were synthesized, followed by their incorporation in chitosan microspheres. FTIR analysis confirmed the synthesis of nickel sulfide-chitosan microspheres (NiS-CMs) displaying sharp bands for multiple functional groups. XRD analysis showed that the NiS-CMs possessed a crystallite size of 42.1 nm. SEM analysis indicated the size of NiS-CMs to be 950.71 µm based on SEM micrographs. The sorption of mercury was performed using the NiS-CMs, and the results were satisfactory, with a sorption capacity of 61 mg/g at the optimized conditions of pH 5.0, 80 ppm concentration, in 60 min at 25 °C. Isothermal models and kinetics studies revealed that the process followed pseudo-second-order kinetics and the Langmuir isothermal model best fitted to experimental data. It was concluded that the NiS-CMs have emerged as the best choice for removing toxic mercury ions with a positive impact on the environment.
Assuntos
Quitosana , Mercúrio , Poluentes Químicos da Água , Mercúrio/análise , Quitosana/química , Níquel/análise , Microesferas , Águas Residuárias , Descontaminação , Cátions/análise , Substâncias Perigosas/análise , Adsorção , Cinética , Concentração de Íons de Hidrogênio , Poluentes Químicos da Água/análiseRESUMO
Nowadays, the specificity of enzymatic processes makes them more and more important every year, and their usage on an industrial scale seems to be necessary. Enzymatic cofactors, however, play a crucial part in the prospective applications of enzymes, because they are indispensable for conducting highly effective biocatalytic activities. Due to the relatively high cost of these compounds and their consumption during the processes carried out, it has become crucial to develop systems for cofactor regeneration. Therefore, in this review, an attempt was made to summarize current knowledge on enzymatic regeneration methods, which are characterized by high specificity, non-toxicity and reported to be highly efficient. The regeneration of cofactors, such as nicotinamide dinucleotides, coenzyme A, adenosine 5'-triphosphate and flavin nucleotides, which are necessary for the proper functioning of a large number of enzymes, is discussed, as well as potential directions for further development of these systems are highlighted. This review discusses a range of highly effective cofactor regeneration systems along with the productive synthesis of many useful chemicals, including the simultaneous renewal of several cofactors at the same time. Additionally, the impact of the enzyme immobilization process on improving the stability and the potential for multiple uses of the developed cofactor regeneration systems was also presented. Moreover, an attempt was made to emphasize the importance of the presented research, as well as the identification of research gaps, which mainly result from the lack of available literature on this topic.
Assuntos
Coenzimas , Niacinamida , Coenzimas/química , Enzimas Imobilizadas/metabolismo , Biocatálise , Trifosfato de AdenosinaRESUMO
A novel chitin-ethylene glycol hybrid gel was prepared as a hydrogel electrolyte for electrical double-layer capacitors (EDLCs) using 1-butyl-3-methylimidazolium acetate [Bmim][Ac] as a chitin solvent. Examination of the morphology and topography of the chitin-EG membrane showed a homogeneous and smooth surface, while the thickness of the membrane obtained was 27 µm. The electrochemical performance of the chitin-EG hydrogel electrolyte was investigated by cyclic voltammetry and galvanostatic charge/discharge measurements. The specific capacitance value of the EDLC with chitin-EG hydrogel electrolyte was found to be 109 F g-1 in a potential range from 0 to 0.8 V. The tested hydrogel material was electrochemically stable and did not decompose even after 10,000 GCD cycles. Additionally, the EDLC test cell with chitin-EG hydrogel as electrolyte exhibited superior capacitance retention after 10,000 charge/discharge cycles compared with a commercial glass fiber membrane.
RESUMO
The presence of micropollutants in water, wastewater and soil are a global problem due to their persistent effect on ecosystems and human health. Although there are many methods of removal of environmental pollutants, they are often ineffective for degradation of pharmaceuticals, including estrogens. In presented work we proposed fabrication of electrospun material from polyacrylonitrile/polyethersulfone (PAN/PES) as a support for laccase immobilization by covalent binding. Oxidoreductase was attached to the electrospun fibers using polydopamine as a linker and produced system was used for degradation of two estrogens: 17ß-estradiol (E2) and 17α-ethynylestradiol (EE2). It was shown that 92% of E2 and 100% of EE2 were degraded after 24 h of the process. Moreover, the effect of surfactants, metal ions and mediators on conversion efficiencies of estrogens was investigated and it was confirmed that immobilized enzyme possessed higher resistance to inhibitory agents as well as thermal and storage stability, compared to its native form. Finally, estrogenic activities of E2 and EE2 solutions decreased around 99% and 87%, respectively, after enzymatic conversion, that corresponds to significant reduction of the total organic carbon and formation of low-toxic final products of estrogens degradation.
Assuntos
Estrogênios , Poluentes Químicos da Água , Resinas Acrílicas , Ecossistema , Estradiol/metabolismo , Estrogênios/metabolismo , Etinilestradiol/metabolismo , Humanos , Lacase/metabolismo , Polímeros , Sulfonas , Poluentes Químicos da Água/químicaRESUMO
Three different 3D fibrous-like NiO/Ni(OH)2/Nicarbonized spongin-based materials were prepared via a simple sorption-reduction method. Depending on the support used, the catalysts were composed of carbon, nickel oxide, nickel hydroxide and zero-valent nickel, with the surface content of the nickel-containing phase in the range 15.2-26.0 wt%. Catalytic studies showed promising activity in the oxidation of phenolic compounds in water and in the reduction of 4-nitrophenol. The oxidation efficiency depends on the substrate used and ranges from 80% for phenol at pH 2 to 99% for 4-chlorophenoxyacetic acid (4-CPA) and methylchlorophenoxypropionic acid (MCPP). In the reduction reaction, all catalysts exhibited superior activity, with rate constants in the range 0.648-1.022 min-1. The work also includes a detailed investigation of reusability and kinetic studies.
Assuntos
Carbono , Níquel , Catálise , Conservação dos Recursos Naturais , CinéticaRESUMO
One of the directions of development in the textiles industry is the search for new technologies for producing modern multifunctional products. New solutions are sought to obtain materials that will protect humans against the harmful effects of the environment, including such factors as the activity of microorganisms and UV radiation. Products made of natural cellulose fibers are often used. In the case of this type of material, it is very important to perform appropriate pretreatment before subsequent technological processes. This treatment has the aim of removing impurities from the surface of the fibers, which results in the improvement of sorption properties and adhesion, leading directly to the better penetration of dyes and chemical modifiers into the structure of the materials. In this work, linen fabrics were subjected to a new, innovative treatment being a combination of bio-pretreatment using laccase from Cerrena unicolor and modification with CuO-SiO2 hybrid oxide microparticles by a dip-coating method. To compare the effect of alkaline or enzymatic pretreatment on the microstructure of the linen woven fabrics, SEM analysis was performed. The new textile products obtained after this combined process exhibit very good antimicrobial activity against Candida albicans, significant antibacterial activity against the Gram-negative Escherichia coli and the Gram-positive Staphylococcus aureus, as well as very good UV protection properties (ultraviolet protection factor (UPF) > 40). These innovative materials can be used especially for clothing or outdoor textiles for which resistance to microorganisms is required, as well as to protect people who are exposed to long-term, harmful effects of UV radiation.
Assuntos
Antiácidos/química , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Roupas de Cama, Mesa e Banho , Corantes/química , Polyporales/química , Dióxido de Silício/química , Têxteis , Raios UltravioletaRESUMO
INTRODUCTION: We present a multimodal nanoplatforms for the treatment of hepatocellular carcinoma (HCC) in vitro. The nanoplatforms are based on polydopamine (PDA)-coated magnetite nanoparticles (NPs) and spheres (sMAG) with PAMAM dendrimers and functionalized with NHS-PEG-Mal (N-hydroxysuccinimide-polyethylene glycol-maleimide) linker, which allows their functionalization with a folic acid derivative. The nanomaterials bearing a folic acid-targeting moiety show high efficiency in killing cancer cells in the dual chemo- and photothermal therapy (CT-PTT) of the liver cancer cells in comparison to modalities performed separately. MATERIALS AND METHODS: All materials are characterized in detail with transmission electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, zeta potential and magnetic measurements. Also, photothermal properties were determined under irradiation of nanoparticles with laser beam of 2 W/cm2. The nontoxicity of nanoparticles with doxorubicin and without was checked by WST and LIVE/DEAD assay. Those tests were also used to evaluate materials bearing folic acid and anticancer drug in combined chemo- and photothermal therapy of HCC. Further, the generation of reactive oxygen species profile was also evaluated using flow cytometry test. RESULTS: Both NPs and sMAG showed high photothermal properties. Nevertheless, the higher photothermal response was found for magnetic spheres. Materials of concentration above 10 µg/mL reveal that their activity was comparable to free doxorubicin. It is worth highlighting that a functionalized magnetic sphere with DOXO more strongly affected the HepG2 cells than smaller functionalized nanoparticles with DOXO in the performed chemotherapy. This can be attributed to the larger size of particles and a different method of drug distribution. In the further stage, both materials were assessed in combined chemo- and photothermal therapy (CT-PTT) which revealed that magnetic spheres were also more effective in this modality than smaller nanoparticles. CONCLUSION: Here, we present two types of nanomaterials (nanoparticles and spheres) based on polydopamine and PAMAM dendrimers g.5.0 functionalized with NHS-PEG-Mal linker terminated with folic acid for in vitro hepatocellular carcinoma treatment. The obtained materials can serve as efficient agents for dual chemo- and photothermal therapy of HCC. We also proved that PDA-coated magnetic spheres were more efficient in therapies based on near-infrared irradiation because determined cell viabilities for those materials are lower than for the same concentrations of nanomaterials based on small magnetic nanoparticles.
Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Carcinoma Hepatocelular/terapia , Portadores de Fármacos/química , Neoplasias Hepáticas/terapia , Nanopartículas de Magnetita/química , Fototerapia , Animais , Antineoplásicos/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Linhagem Celular Tumoral , Terapia Combinada , Dendrímeros/química , Doxorrubicina/química , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Liberação Controlada de Fármacos , Humanos , Indóis/química , Neoplasias Hepáticas/tratamento farmacológico , Polietilenoglicóis/química , Polímeros/químicaRESUMO
Diverse fields of modern environmental technology are nowadays focused on the discovery and development of new sources for oil spill removal. An especially interesting type of sorbents is those of natural origin-biosorbents-as ready-to-use constructs with biodegradable, nontoxic, renewable and cost-efficient properties. Moreover, the growing problem of microplastic-related contamination in the oceans further encourages the use of biosorbents. Here, for the first time, naturally pre-designed molting cuticles of the Theraphosidae spider Avicularia sp. "Peru purple", as part of constituting a large-scale spider origin waste material, were used for efficient sorption of crude oil. Compared with currently used materials, the proposed biosorbent of spider cuticular origin demonstrates excellent ability to remain on the water surface for a long time. In this study the morphology and hydrophobic features of Theraphosidae cuticle are investigated for the first time. The unique surface morphology and very low surface free energy (4.47 ± 0.08 mN/m) give the cuticle-based, tube-like, porous biosorbent excellent oleophilic-hydrophobic properties. The crude oil sorption capacities of A. sp. "Peru purple" molt structures in sea water, distilled water and fresh water were measured at 12.6 g/g, 15.8 g/g and 16.6 g/g respectively. These results indicate that this biomaterial is more efficient than such currently used fibrous sorbents as human hairs or chicken feathers. Four cycles of desorption were performed and confirmed the reusability of the proposed biosorbent. We suggest that the oil adsorption mechanism is related to the brush-like and microporous structure of the tubular spider molting cuticles and may also involve interaction between the cuticular wax layers and crude oil.
Assuntos
Poluição por Petróleo , Petróleo , Aranhas , Poluentes Químicos da Água , Adsorção , Animais , Muda , Peru , PlásticosRESUMO
Inorganic-organic hybrids are a group of materials that have recently become the subject of intense scientific research. They exhibit some of the specific properties of both highly durable inorganic materials (e.g., titanium dioxide, zinc) and organic products with divergent physicochemical traits (e.g., lignin, chitin). This combination results in improved physicochemical, thermal or mechanical properties. Hybrids with defined characteristics can be used as fillers for polymer composites. In this study, three types of filler with different MgO/lignin ratio were used as fillers for polypropylene (PP). The effectiveness of MgO-lignin binding was confirmed using Fourier transform infrared spectroscopy. The fillers were also tested in terms of thermal stability, dispersive-morphological properties as well as porous structure. Polymer composites containing 3 wt.% of each filler were subjected to wide angle X-ray diffraction tests, differential scanning calorimetry and microscopic studies to define their structure, morphology and thermal properties. Additionally, tensile tests of the composites were performed. It was established that the composition of the filler has a significant influence on the crystallization of polypropylene-either spherulites or transcrystalline layers were formed. The value of Young's modulus and tensile strength remained unaffected by filler type. However, composites with hybrid fillers exhibited lower elongation at break than unfilled polypropylene.
Assuntos
Lignina/química , Óxido de Magnésio/química , Manufaturas/análise , Polipropilenos/química , Cristalização , Módulo de Elasticidade , Humanos , Teste de Materiais , Porosidade , Estresse Mecânico , Resistência à TraçãoRESUMO
Here we report the synthesis of multifunctional nanocarriers based on PAMAM dendrimers generation (G) 4.0, 5.0 and 6.0 fixed to polydopamine (PDA) coated magnetite nanoparticles (Fe3O4). Synthesized nanoplatforms were characterized by transmission electron microscopy (TEM), the electrokinetic (zeta) potential, Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS) and magnetic resonance imaging (MRI). Further, we show as a proof of concept that nanocarriers functionalized with G 5.0 could be successfully applied in combined chemo- and photothermal therapy (CT-PTT) of the liver cancer cells. The cooperative effect of the modalities mentioned above led to higher mortality of cancer cells when compared to their individual performance. Moreover, the performed in vitro studies revealed that the application of dual therapy triggered the desired cell death mechanism-apoptosis. Furthermore, performed tests using Magnetic Resonance Imaging (MRI) showed that our materials have competitive contrast properties. Overall, the functionality of dendrimers has been extended by merging them with magnetic nanoparticles resulting in multifunctional hybrid nanostructures that are promising smart drug delivery system for cancer therapy.
Assuntos
Antibióticos Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Dendrímeros/química , Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas de Magnetita/química , Antibióticos Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Meios de Contraste/química , Doxorrubicina/química , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Óxido Ferroso-Férrico/química , Células Hep G2 , Humanos , Indóis/química , Raios Infravermelhos , Cinética , Imageamento por Ressonância Magnética/métodos , Nanopartículas de Magnetita/ultraestrutura , Fototerapia/métodos , Polímeros/química , Nanomedicina Teranóstica/métodosRESUMO
Polydopamine (PDA)-coated magnetic nanoparticles functionalized with mono-6-thio-ß-cyclodextrin (SH-ßCD) were obtained and characterized by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), Nuclear and Magnetic Resonance Imaging (NMR and MRI), and doxorubicin (DOXO)-loading experiments. The liver cancer cellular internalization of DOXO-loaded nanoparticles was investigated by confocal imaging microscopy. Synthesized nanomaterials bearing a chemotherapeutic drug and a layer of polydopamine capable of absorbing near-infrared light show high performance in the combined chemo- and photothermal therapy (CT-PTT) of liver cancer due to the synergistic effect of both modalities as demonstrated in vitro. Moreover, our material exhibits improved T2 contrast properties, which have been verified using Carr-Purcell-Meiboom-Gill pulse sequence and MRI Spin-Echo imaging of the nanoparticles dispersed in the agarose gel phantoms. Therefore, the presented results cast new light on the preparation of polydopamine-based magnetic theranostic nanomaterials, as well as on the proper methodology for investigation of magnetic nanoparticles in high field MRI experiments. The prepared material is a robust theranostic nanoasystem with great potential in nanomedicine.
RESUMO
This study investigated for the first time the degradation of phenol, chlorophenol, fluorophenol and bisphenol A (BPA) by the novel iron phthalocyanine/spongin hybrid material under various process conditions: hydrogen peroxide and UV irradiation. The heterogeneous catalyst, iron phthalocyanine/spongin (SFe), was produced by an adsorption process. The product obtained was investigated by a variety of spectroscopic techniques - X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR) and carbon-13 nuclear magnetic resonance (13C NMR) - as well as elemental and thermal analysis. The study confirmed the stable immobilization of the dye on the biopolymer. The results demonstrate that the degradation of phenols and BPA followed pseudo-second-order kinetics under different experimental conditions. The synergy of SFe, H2O2 and UV was found to produce a significant increase in the removal efficiency and resulted in complete removal of contaminants in a short time of 1â¯h. The reaction products were identified by high-performance liquid chromatography/mass spectrometry (HPLC-MS) and possible degradation pathways were proposed, featuring a series of steps including cleavage of CC bonds and oxidation.
RESUMO
A comparative analysis was performed concerning the removal of two different organic dyes from model aqueous solution using an inorganic oxide adsorbent. The key element of the study concerns evaluation of the influence of the dyes' structure and their acid-base character on the efficiency of the adsorption process. The selection of sorbent material for this research - an MgO-SiO2 oxide system synthesized via a modified sol-gel route - is also not without significance. The relatively high porous structure parameters of this material (ABET = 642 m2/g, Vp = 1.11 mL and Sp = 9.8 nm) are a result of the proposed methodology for its synthesis. Both organic dyes (C.I. Acid Blue 29 and C.I. Basic Blue 9) were subjected to typical batch adsorption tests, including investigation of such process parameters as time, initial adsorbate concentration, adsorbent dose, pH and temperature. An attempt was also made to estimate the sorption capacity of the oxide material with respect to the analyzed organic dyes. To achieve the objectives of the research - determine the efficiency of adsorption - it was important to perform a thorough physicochemical analysis of the adsorbents (e.g. FTIR, elemental analysis and porous structure parameters). The results confirmed the significantly higher affinity of the basic dye to the oxide adsorbents compared with the acidic dye. The regeneration tests, which indirectly determine the nature of the adsorbent/adsorbate interactions, provide further evidence for this finding. On this basis, a probable mechanism of dyes adsorption on the MgO-SiO2 oxide adsorbent was proposed.
Assuntos
Compostos Azo/química , Azul de Metileno/química , Naftalenos/química , Óxidos/química , Tiazinas/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Adsorção , Corantes/química , Cinética , Temperatura , ÁguaRESUMO
A novel approach using a zwitterionic sulfobetaine-based surfactant for the synthesis of spherical copper oxide nanoparticles (Cu2O NPs) has been applied. For the first time, N-hexadecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate has been used as stabilizer to control the size and morphology of Cu2O NPs. Several techniques, such as transmission electron microscopy (TEM), X-ray diffraction (XRD), and fluorescence spectroscopy, are used to investigate the size, structure, and optical properties of synthesized Cu2O nanocrystals. The results indicate that copper(I) oxide nanoparticles with size in the range of 2 to 45 nm and crystalline structure, exhibit intense yellow fluorescence (λem = 575 nm). Furthermore, the cytotoxicity studies show that sulfobetaine-stabilized copper oxide nanoparticles prompt inhibition of cancer cell proliferation in a concentration-dependent manner, however, the adverse effect on the normal cells has also been observed. The results indicate that the sulfobetaine-stabilized Cu2O, because of their unique properties, have a potential to be applied in medical fields, such as cancer therapy and bioimaging.
RESUMO
A new method is proposed for the production of a novel chitin-polyhedral oligomeric silsesquioxanes (POSS) enzyme support. Analysis by such techniques as X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy confirmed the effective functionalization of the chitin surface. The resulting hybrid carriers were used in the process of immobilization of the lipase type b from Candida antarctica (CALB). Fourier transform infrared spectroscopy (FTIR) confirmed the effective immobilization of the enzyme. The tests of the catalytic activity showed that the resulting support-biocatalyst systems remain hydrolytically active (retention of the hydrolytic activity up to 87% for the chitin + Methacryl POSS® cage mixture (MPOSS) + CALB after 24 h of the immobilization), as well as represents good thermal and operational stability, and retain over 80% of its activity in a wide range of temperatures (30-60 °C) and pH (6-9). Chitin-POSS-lipase systems were used in the transesterification processes of rapeseed oil at various reaction conditions. Produced systems allowed the total conversion of the oil to fatty acid methyl esters (FAME) and glycerol after 24 h of the process at pH 10 and a temperature 40 °C, while the Methacryl POSS® cage mixture (MPOSS) was used as a chitin-modifying agent.