Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
NEJM Evid ; 1(1): EVIDoa2100001, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-38319241

RESUMO

BACKGROUND: Receptor tyrosine kinase-like orphan receptor 1 (ROR1) is an oncofetal protein present on many cancers. Zilovertamab vedotin (ZV) is an antibody­drug conjugate comprising a monoclonal antibody recognizing extracellular ROR1, a cleavable linker, and the anti-microtubule cytotoxin monomethyl auristatin E. METHODS: In this phase 1, first-in-human, dose-escalation study, we accrued patients with previously treated lymphoid cancers to receive ZV every 3 weeks until the occurrence of cancer progression or unacceptable toxicity had occurred. RESULTS: We enrolled 32 patients with tumor histologies of mantle cell lymphoma (MCL) (n=15), chronic lymphocytic leukemia (n=7), diffuse large B-cell lymphoma (DLBCL) (n=5), follicular lymphoma (n=3), Richter transformation lymphoma (n=1), or marginal zone lymphoma (n=1). Patients had received a median of four previous drug and/or cellular therapies. Starting dose levels were 0.5 (n=1), 1.0 (n=3), 1.5 (n=3), 2.25 (n=11), and 2.5 (n=14) mg per kg of body weight (mg/kg). Pharmacokinetic and pharmacodynamic data documented systemic ZV exposure and exposure-dependent ZV targeting of ROR1 on circulating tumor cells. As expected with an monomethyl auristatin E-containing antibody­drug conjugate, adverse events (AEs) included acute neutropenia and cumulative neuropathy resulting in a recommended ZV dosing regimen of 2.5 mg/kg every 3 weeks. No clinically concerning AEs occurred to suggest ROR1-mediated toxicities or nonspecific ZV binding to normal tissues. ZV induced objective tumor responses in 7 of 15 patients with MCL (47%; 4 partial and 3 complete) and in 3 of 5 patients with DLBCL (60%; 1 partial and 2 complete); objective tumor responses were not observed among patients with other tumor types. CONCLUSIONS: In heavily pretreated patients, ZV demonstrated no unexpected toxicities and showed evidence of antitumor activity, providing clinical proof of concept for selective targeting of ROR1 as a potential new approach to cancer therapy. (ClinicalTrials.gov number, NCT03833180.)


Assuntos
Linfoma de Célula do Manto , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase , Humanos , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Linfoma de Célula do Manto/tratamento farmacológico , Imunoconjugados/uso terapêutico , Imunoconjugados/farmacologia , Linfoma Difuso de Grandes Células B/tratamento farmacológico
2.
J Hematol Oncol ; 14(1): 132, 2021 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-34454548

RESUMO

Mantle cell lymphoma (MCL) is a rare, aggressive and incurable subtype of non-Hodgkin's B-cell lymphoma. The principal barrier is frequent clinical relapse to multiple lines of therapies, including new FDA-approved biologics and cell therapy. Brexucabtagene autoleucel, the first and only FDA approved chimeric antigen receptor (CAR) T product in MCL, demonstrated unprecedented efficacy in overcoming resistance to Bruton's tyrosine kinase inhibitors. However, relapses have inevitably occurred and once relapsed these patients display a very poor clinical outcome. Currently, there is no optional therapy specifically designed for these patients. The development of tailored and more efficacious therapies is therefore critical and represents a new medical need. We found that while the receptor tyrosine kinase-like orphan receptor 1 (ROR1) is expressed across most of the MCL cells, it is significantly elevated in CAR T-relapsed MCL tumors. To see whether this aberrant ROR1 expression contributed to CAR T resistance, we targeted ROR1 using VLS-101, a monomethyl auristatin E conjugated anti-ROR1 antibody. VLS-101 showed potent anti-MCL activity in vitro in ROR1-expressing MCL cell lines and ex vivo in primary patient samples. Importantly, VLS-101 safely induced tumor regression in PDX models resistant to CAR T-cell therapy, ibrutinib and/or venetoclax. These data advocate for targeting ROR1 as a viable approach in the treatment of ROR1-positive MCL tumors, especially those with failure to prior therapies. These data also provide strong evidence for future enrollment of post-CD19 CAR T-cell relapsed MCL patients in a first in-human phase 1b VLS-101 trial. The upcoming testing in a clinical setting will provide important insights on this new therapeutic development aiming to overcome the CAR T resistance via targeting ROR1, which is a rising unmet clinical need in MCL.


Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Imunoconjugados/uso terapêutico , Linfoma de Célula do Manto/tratamento farmacológico , Recidiva Local de Neoplasia/tratamento farmacológico , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/antagonistas & inibidores , Animais , Antineoplásicos Imunológicos/imunologia , Humanos , Imunoconjugados/imunologia , Imunoterapia Adotiva , Linfoma de Célula do Manto/imunologia , Linfoma de Célula do Manto/terapia , Camundongos , Recidiva Local de Neoplasia/imunologia , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/imunologia , Células Tumorais Cultivadas
3.
Blood ; 137(24): 3365-3377, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-33512452

RESUMO

Richter syndrome (RS) represents the transformation of chronic lymphocytic leukemia (CLL), typically to an aggressive lymphoma. Treatment options for RS are limited and the disease is often fatal. Receptor tyrosine kinase-like orphan receptor 1 (ROR1) is expressed on CLL cells and other cancers but not on healthy adult tissues, making it an attractive, tumor-specific therapeutic target. VLS-101 is being developed as an antibody-drug conjugate (ADC) for therapy of ROR1-expressing (ROR1+) cancers. VLS-101 comprises UC-961 (a humanized immunoglobulin G1 monoclonal antibody that binds an extracellular epitope of human ROR1), a maleimidocaproyl-valine-citrulline-para-aminobenzoate linker, and the antimicrotubule cytotoxin monomethyl auristatin E (MMAE). VLS-101 binding to ROR1 results in rapid cellular internalization and delivery of MMAE to induce tumor cell death. We studied 4 RS patient-derived xenografts (RS-PDXs) with varying levels of ROR1 expression (11%, 32%, 85%, and 99% of cells). VLS-101 showed no efficacy in the lowest-expressing RS-PDX but induced complete remissions in those with higher levels of ROR1 expression. Responses were maintained during the posttherapy period, particularly after higher VLS-101 doses. In systemic ROR1+ RS-PDXs, VLS-101 dramatically decreased tumor burden in all RS-colonized tissues and significantly prolonged survival. Animals showed no adverse effects or weight loss. Our results confirm ROR1 as a target in RS and demonstrate the therapeutic potential of using an ADC directed toward ROR1 for the treatment of hematological cancers. A phase 1 clinical trial of VLS-101 (NCT03833180) is ongoing in patients with RS and other hematological malignancies.


Assuntos
Aminobenzoatos/farmacologia , Antineoplásicos Imunológicos/farmacologia , Sistemas de Liberação de Medicamentos , Imunoconjugados/farmacologia , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Proteínas de Neoplasias/antagonistas & inibidores , Oligopeptídeos/farmacologia , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/antagonistas & inibidores , Aminobenzoatos/química , Animais , Antineoplásicos Imunológicos/química , Humanos , Imunoconjugados/química , Leucemia Linfocítica Crônica de Células B/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Proteínas de Neoplasias/metabolismo , Oligopeptídeos/química , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
4.
J Med Chem ; 61(8): 3516-3540, 2018 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-29526098

RESUMO

Dysregulated translation of mRNA plays a major role in tumorigenesis. Mitogen-activated protein kinase interacting kinases (MNK)1/2 are key regulators of mRNA translation integrating signals from oncogenic and immune signaling pathways through phosphorylation of eIF4E and other mRNA binding proteins. Modulation of these key effector proteins regulates mRNA, which controls tumor/stromal cell signaling. Compound 23 (eFT508), an exquisitely selective, potent dual MNK1/2 inhibitor, was designed to assess the potential for control of oncogene signaling at the level of mRNA translation. The crystal structure-guided design leverages stereoelectronic interactions unique to MNK culminating in a novel pyridone-aminal structure described for the first time in the kinase literature. Compound 23 has potent in vivo antitumor activity in models of diffuse large cell B-cell lymphoma and solid tumors, suggesting that controlling dysregulated translation has real therapeutic potential. Compound 23 is currently being evaluated in Phase 2 clinical trials in solid tumors and lymphoma. Compound 23 is the first highly selective dual MNK inhibitor targeting dysregulated translation being assessed clinically.


Assuntos
Antineoplásicos/uso terapêutico , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Piridinas/uso terapêutico , Piridonas/uso terapêutico , Pirimidinas/uso terapêutico , Compostos de Espiro/uso terapêutico , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Domínio Catalítico , Linhagem Celular Tumoral , Desenho de Fármacos , Fator de Iniciação 4E em Eucariotos/química , Fator de Iniciação 4E em Eucariotos/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Estrutura Molecular , Fosforilação , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Piridinas/síntese química , Piridinas/química , Piridinas/farmacologia , Piridonas/síntese química , Piridonas/química , Piridonas/farmacologia , Pirimidinas/síntese química , Pirimidinas/química , Pirimidinas/farmacologia , Ratos , Serina/química , Transdução de Sinais/efeitos dos fármacos , Compostos de Espiro/síntese química , Compostos de Espiro/química , Compostos de Espiro/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
6.
J Biol Chem ; 288(8): 5718-31, 2013 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-23275335

RESUMO

Class IA phosphoinositide 3-kinase (PI3K) is essential for clonal expansion, differentiation, and effector function of B and T lymphocytes. The p110δ catalytic isoform of PI3K is highly expressed in lymphocytes and plays a prominent role in B and T cell responses. Another class IA PI3K catalytic isoform, p110α, is a promising drug target in cancer but little is known about its function in lymphocytes. Here we used highly selective inhibitors to probe the function of p110α in lymphocyte responses in vitro and in vivo. p110α inhibition partially reduced B cell receptor (BCR)-dependent AKT activation and proliferation, and diminished survival supported by the cytokines BAFF and IL-4. Selective p110δ inhibition suppressed B cell responses much more strongly, yet maximal suppression was achieved by targeting multiple PI3K isoforms. In mouse and human T cells, inhibition of single class IA isoforms had little effect on proliferation, whereas pan-class I inhibition did suppress T cell expansion. In mice, selective p110α inhibition using the investigational agent MLN1117 (previously known as INK1117) did not disrupt the marginal zone B cell compartment and did not block T cell-dependent germinal center formation. In contrast, the selective p110δ inhibitor IC87114 strongly suppressed germinal center formation and reduced marginal zone B cell numbers, similar to a pan-class I inhibitor. These findings show that although acute p110α inhibition partially diminishes AKT activation, selective p110α inhibitors are likely to be less immunosuppressive in vivo compared with p110δ or pan-class I inhibitors.


Assuntos
Classe Ia de Fosfatidilinositol 3-Quinase/metabolismo , Inibidores Enzimáticos/farmacologia , Regulação Enzimológica da Expressão Gênica , Linfócitos/citologia , Inibidores de Fosfoinositídeo-3 Quinase , Animais , Cálcio/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Desenho de Fármacos , Ensaio de Imunoadsorção Enzimática/métodos , Humanos , Imunossupressores/farmacologia , Linfócitos/enzimologia , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Isoformas de Proteínas , Transdução de Sinais , Baço/citologia , Linfócitos T/citologia , Linfócitos T/enzimologia
7.
Mol Cancer Ther ; 8(12): 3181-90, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19934279

RESUMO

The MET receptor tyrosine kinase has emerged as an important target for the development of novel cancer therapeutics. Activation of MET by mutation or gene amplification has been linked to kidney, gastric, and lung cancers. In other cancers, such as glioblastoma, autocrine activation of MET has been demonstrated. Several classes of ATP-competitive inhibitor have been described, which inhibit MET but also other kinases. Here, we describe SGX523, a novel, ATP-competitive kinase inhibitor remarkable for its exquisite selectivity for MET. SGX523 potently inhibited MET with an IC50 of 4 nmol/L and is >1,000-fold selective versus the >200-fold selectivity of other protein kinases tested in biochemical assays. Crystallographic study revealed that SGX523 stabilizes MET in a unique inactive conformation that is inaccessible to other protein kinases, suggesting an explanation for the selectivity. SGX523 inhibited MET-mediated signaling, cell proliferation, and cell migration at nanomolar concentrations but had no effect on signaling dependent on other protein kinases, including the closely related RON, even at micromolar concentrations. SGX523 inhibition of MET in vivo was associated with the dose-dependent inhibition of growth of tumor xenografts derived from human glioblastoma and lung and gastric cancers, confirming the dependence of these tumors on MET catalytic activity. Our results show that SGX523 is the most selective inhibitor of MET catalytic activity described to date and is thus a useful tool to investigate the role of MET kinase in cancer without the confounding effects of promiscuous protein kinase inhibition.


Assuntos
Trifosfato de Adenosina/farmacologia , Neoplasias/prevenção & controle , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Piridazinas/farmacologia , Triazóis/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Catálise/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Humanos , Cinética , Camundongos , Camundongos Nus , Modelos Moleculares , Estrutura Molecular , Neoplasias/metabolismo , Neoplasias/patologia , Fosforilação/efeitos dos fármacos , Ligação Proteica , Inibidores de Proteínas Quinases/química , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-met/química , Proteínas Proto-Oncogênicas c-met/metabolismo , Piridazinas/química , Triazóis/química , Carga Tumoral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA