Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Immunol ; 25(10): 1913-1927, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39227514

RESUMO

A mucosal route of vaccination could prevent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication at the site of infection and limit transmission. We compared protection against heterologous XBB.1.16 challenge in nonhuman primates (NHPs) ~5 months following intramuscular boosting with bivalent mRNA encoding WA1 and BA.5 spike proteins or mucosal boosting with a WA1-BA.5 bivalent chimpanzee adenoviral-vectored vaccine delivered by intranasal or aerosol device. NHPs boosted by either mucosal route had minimal virus replication in the nose and lungs, respectively. By contrast, protection by intramuscular mRNA was limited to the lower airways. The mucosally delivered vaccine elicited durable airway IgG and IgA responses and, unlike the intramuscular mRNA vaccine, induced spike-specific B cells in the lungs. IgG, IgA and T cell responses correlated with protection in the lungs, whereas mucosal IgA alone correlated with upper airway protection. This study highlights differential mucosal and serum correlates of protection and how mucosal vaccines can durably prevent infection against SARS-CoV-2.


Assuntos
Anticorpos Antivirais , Vacinas contra COVID-19 , COVID-19 , Imunização Secundária , Imunoglobulina A , SARS-CoV-2 , Animais , Imunoglobulina A/imunologia , SARS-CoV-2/imunologia , COVID-19/prevenção & controle , COVID-19/imunologia , COVID-19/virologia , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Macaca mulatta , Adenoviridae/imunologia , Adenoviridae/genética , Imunidade nas Mucosas , Vacinas contra Adenovirus/imunologia , Vacinas contra Adenovirus/administração & dosagem , Feminino , Pulmão/virologia , Pulmão/imunologia , Linfócitos B/imunologia , Imunoglobulina G/imunologia , Imunoglobulina G/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , Administração Intranasal , Vacinação/métodos , Humanos
2.
Biofabrication ; 16(1)2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-37972398

RESUMO

Embryoid bodies (EBs) and self-organizing organoids derived from human pluripotent stem cells (hPSCs) recapitulate tissue development in a dish and hold great promise for disease modeling and drug development. However, current protocols are hampered by cellular stress and apoptosis during cell aggregation, resulting in variability and impaired cell differentiation. Here, we demonstrate that EBs and various organoid models (e.g., brain, gut, kidney) can be optimized by using the small molecule cocktail named CEPT (chroman 1, emricasan, polyamines, trans-ISRIB), a polypharmacological approach that ensures cytoprotection and cell survival. Application of CEPT for just 24 h during cell aggregation has long-lasting consequences affecting morphogenesis, gene expression, cellular differentiation, and organoid function. Various qualification methods confirmed that CEPT treatment enhanced experimental reproducibility and consistently improved EB and organoid fitness as compared to the widely used ROCK inhibitor Y-27632. Collectively, we discovered that stress-free cell aggregation and superior cell survival in the presence of CEPT are critical quality control determinants that establish a robust foundation for bioengineering complex tissue and organ models.


Assuntos
Corpos Embrioides , Células-Tronco Pluripotentes , Humanos , Corpos Embrioides/metabolismo , Reprodutibilidade dos Testes , Organoides , Diferenciação Celular
3.
bioRxiv ; 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37986823

RESUMO

Waning immunity and continued virus evolution have limited the durability of protection from symptomatic infection mediated by intramuscularly (IM)-delivered mRNA vaccines against COVID-19 although protection from severe disease remains high. Mucosal vaccination has been proposed as a strategy to increase protection at the site of SARS-CoV-2 infection by enhancing airway immunity, potentially reducing rates of infection and transmission. Here, we compared protection against XBB.1.16 virus challenge 5 months following IM or mucosal boosting in non-human primates (NHP) that had previously received a two-dose mRNA-1273 primary vaccine regimen. The mucosal boost was composed of a bivalent chimpanzee adenoviral-vectored vaccine encoding for both SARS-CoV-2 WA1 and BA.5 spike proteins (ChAd-SARS-CoV-2-S) and delivered either by an intranasal mist or an inhaled aerosol. An additional group of animals was boosted by the IM route with bivalent WA1/BA.5 spike-matched mRNA (mRNA-1273.222) as a benchmark control. NHP were challenged in the upper and lower airways 18 weeks after boosting with XBB.1.16, a heterologous Omicron lineage strain. Cohorts boosted with ChAd-SARS-CoV-2-S by an aerosolized or intranasal route had low to undetectable virus replication as assessed by levels of subgenomic SARS-CoV-2 RNA in the lungs and nose, respectively. In contrast, animals that received the mRNA-1273.222 boost by the IM route showed minimal protection against virus replication in the upper airway but substantial reduction of virus RNA levels in the lower airway. Immune analysis showed that the mucosal vaccines elicited more durable antibody and T cell responses than the IM vaccine. Protection elicited by the aerosolized vaccine was associated with mucosal IgG and IgA responses, whereas protection elicited by intranasal delivery was mediated primarily by mucosal IgA. Thus, durable immunity and effective protection against a highly transmissible heterologous variant in both the upper and lower airways can be achieved by mucosal delivery of a virus-vectored vaccine. Our study provides a template for the development of mucosal vaccines that limit infection and transmission against respiratory pathogens.

4.
J Biol Chem ; 293(37): 14429-14443, 2018 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-30082318

RESUMO

The Set4 protein in the yeast Saccharomyces cerevisiae contains both a PHD finger and a SET domain, a common signature of chromatin-associated proteins, and shares sequence homology with the yeast protein Set3, the fly protein UpSET, and the human protein mixed-lineage leukemia 5 (MLL5). However, the biological role for Set4 and its potential function in chromatin regulation has not been well defined. Here, we analyzed yeast cell phenotypes associated with loss of Set4 or its overexpression, which revealed that Set4 protects against oxidative stress induced by hydrogen peroxide. Gene expression analysis indicated that Set4 promotes the activation of stress response genes in the presence of oxidative insults. Using ChIP analysis and other biochemical assays, we also found that Set4 interacts with chromatin and directly localizes to stress response genes upon oxidative stress. However, recombinant Set4 did not show detectable methyltransferase activity on histones. Our findings also suggest that Set4 abundance in the cell is balanced under normal and stress conditions to promote survival. Overall, these results suggest a model in which Set4 is a stress-responsive, chromatin-associated protein that activates gene expression programs required for cellular protection against oxidative stress. This work advances our understanding of mechanisms that protect cells during oxidative stress and further defines the role of the Set3-Set4 subfamily of SET domain-containing proteins in controlling gene expression in response to adverse environmental conditions.


Assuntos
Cromatina/metabolismo , Proteínas Cromossômicas não Histona/fisiologia , Regulação Fúngica da Expressão Gênica/fisiologia , Genes Fúngicos , Estresse Oxidativo , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/metabolismo , Estresse Fisiológico/genética , Proteínas Cromossômicas não Histona/genética , Metilação de DNA , Ergosterol/biossíntese , Histona Desacetilases/metabolismo , Histona Desacetilases/fisiologia , Histonas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA