Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1304765, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38343543

RESUMO

Clinical applications of CAR-T cells are limited by the scarcity of tumor-specific targets and are often afflicted with the same on-target/off-tumor toxicities that plague other cancer treatments. A new promising strategy to enforce tumor selectivity is the use of logic-gated, two-receptor systems. One well-described application is termed Tmod™, which originally utilized a blocking inhibitory receptor directed towards HLA-I target antigens to create a protective NOT gate. Here we show that the function of Tmod blockers targeting non-HLA-I antigens is dependent on the height of the blocker antigen and is generally compatible with small, membrane-proximal targets. We compensate for this apparent limitation by incorporating modular hinge units to artificially extend or retract the ligand-binding domains relative to the effector cell surface, thereby modulating Tmod activator and blocker function. By accounting for structural differences between activator and blocker targets, we developed a set of simple geometric parameters for Tmod receptor design that enables targeting of blocker antigens beyond HLA-I, thereby broadening the applications of logic-gated cell therapies.


Assuntos
Neoplasias , Linfócitos T , Humanos , Antígenos/metabolismo
2.
Mol Ther Oncolytics ; 27: 157-166, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36381658

RESUMO

Innovative cell-based therapies are important new weapons in the fight against difficult-to-treat cancers. One promising strategy involves cell therapies equipped with multiple receptors to integrate signals from more than one antigen. We developed a specific embodiment of this approach called Tmod, a two-receptor system that combines activating and inhibitory inputs to distinguish between tumor and normal cells. The selectivity of Tmod is enforced by the inhibitory receptor (blocker) that recognizes an antigen, such as an HLA allele, whose expression is absent from tumors because of loss of heterozygosity. Although unwanted cross-reactivity of the blocker likely reduces efficacy rather than safety, it is important to verify the blocker's specificity. We have tested an A∗02-directed blocker derived from the PA2.1 mouse antibody as a safety mechanism paired with a mesothelin-specific activating CAR in our Tmod construct. We solved the crystal structure of humanized PA2.1 Fab in complex with HLA-A∗02 to determine its binding epitope, which was used to bioinformatically select specific class I HLA alleles to test the blocker's functional specificity in vitro. We found that this A∗02-directed blocker is highly specific for its cognate antigen, with only one cross-reactive allele (A∗69) capable of triggering comparable function.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA