Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
3.
Int J Mol Sci ; 23(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35806280

RESUMO

Resorbable tissue fillers for aesthetic purposes can induce severe complications including product migration, late swelling, and inflammatory reactions. The relation between product characteristics and adverse effects is not well understood. We hypothesized that the degree of cross-linking hyaluronic acid (HA) fillers was associated with the occurrence of adverse effects. Five experimental HA preparations similar to HA fillers were synthesized with an increasing degree of cross-linking. Furthermore, a series of commercial fillers (Perfectha®) was obtained that differ in degradation time based on the size of their particulate HA components. Cytotoxic responses and cytokine production by human THP-1-derived macrophages exposed to extracts of the evaluated resorbable HA fillers were absent to minimal. Gene expression analysis of the HA-exposed macrophages revealed the responses related to cell cycle control and immune reactivity. Our results could not confirm the hypothesis that the level of cross-linking in our experimental HA fillers or the particulate size of commercial HA fillers is related to the induced biological responses. However, the evaluation of cytokine induction and gene expression in macrophages after biomaterial exposure presents promising opportunities for the development of methods to identify cellular processes that may be predictive for biomaterial-induced responses in patients.


Assuntos
Preenchedores Dérmicos , Ácido Hialurônico , Materiais Biocompatíveis/efeitos adversos , Citocinas , Preenchedores Dérmicos/farmacologia , Humanos , Ácido Hialurônico/efeitos adversos , Macrófagos
4.
Nanomaterials (Basel) ; 12(8)2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35457963

RESUMO

Titanium dioxide (TiO2) is present in many different food products as the food additive E171, which is currently scrutinized due to its potential adverse effects, including the stimulation of tumor formation in the gastrointestinal tract. We developed a transgenic mouse model to examine the effects of E171 on colorectal cancer (CRC), using the Cre-LoxP system to create an Apc-gene-knockout model which spontaneously develops colorectal tumors. A pilot study showed that E171 exposed mice developed colorectal adenocarcinomas, which were accompanied by enhanced hyperplasia in epithelial cells, lymphatic nodules at the base of the polyps, and increased tumor size. In the main study, tumor formation was studied following the exposure to 5 mg/kgbw/day of E171 for 9 weeks (Phase I). E171 exposure showed a statistically nonsignificant increase in the number of colorectal tumors in these transgenic mice, as well as a statistically nonsignificant increase in the average number of mice with tumors. Gene expression changes in the colon were analyzed after exposure to 1, 2, and 5 mg/kgbw/day of E171 for 2, 7, 14, and 21 days (Phase II). Whole-genome mRNA analysis revealed the modulation of genes in pathways involved in the regulation of gene expression, cell cycle, post-translational modification, nuclear receptor signaling, and circadian rhythm. The processes associated with these genes might be involved in the enhanced tumor formation and suggest that E171 may contribute to tumor formation and progression by modulation of events related to inflammation, activation of immune responses, cell cycle, and cancer signaling.

5.
Sci Rep ; 9(1): 18287, 2019 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-31797963

RESUMO

The food additive titanium dioxide (TiO2), or E171, is a white food colorant. Recent studies showed after E171 ingestion a significantly increased number of colorectal tumours in a colorectal cancer mouse model as well as inflammatory responses and dysregulation of the immune system in the intestine of rats. In the mouse colon, E171 induced gene expression changes related to oxidative stress, impairment of the immune system, activation of signalling and cancer-related processes. E171 comprises nanoparticles (NPs) and microparticles (MPs). Previous in vitro studies showed that E171, NPs and MPs induced oxidative stress responses, DNA damage and micronuclei formation. This study aimed to investigate the relative contribution of the NPs and MPs to effects of E171 at the transcriptome level in undifferentiated Caco-2 cells by genome wide microarray analysis. The results showed that E171, NPs, and MPs induce gene expression changes related to signalling, inflammation, immune system, transport and cancer. At the pathway level, metabolism of proteins with the insulin processing pathway and haemostasis were specific to E171 exposure. The gene expression changes associated with the immune system and inflammation induced by E171, MPs, and NPs suggest the creation of a favourable environment for colon cancer development.


Assuntos
Aditivos Alimentares/toxicidade , Nanopartículas/toxicidade , Titânio/toxicidade , Transcriptoma/efeitos dos fármacos , Células CACO-2 , Humanos , Tamanho da Partícula
6.
Sci Rep ; 8(1): 9738, 2018 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-29950665

RESUMO

Titanium dioxide as a food additive (E171) has been demonstrated to facilitate growth of chemically induced colorectal tumours in vivo and induce transcriptomic changes suggestive of an immune system impairment and cancer development. The present study aimed to investigate the molecular mechanisms behind the tumour stimulatory effects of E171 in combination with azoxymethane (AOM)/dextran sodium sulphate (DSS) and compare these results to a recent study performed under the same conditions with E171 only. BALB/c mice underwent exposure to 5 mg/kgbw/day of E171 by gavage for 2, 7, 14, and 21 days. Whole genome mRNA microarray analyses on the distal colon were performed. The results show that E171 induced a downregulation of genes involved in the innate and adaptive immune system, suggesting impairment of this system. In addition, over time, signalling genes involved in colorectal cancer and other types of cancers were modulated. In relation to cancer development, effects potentially associated with oxidative stress were observed through modulation of genes related to antioxidant production. E171 affected genes involved in biotransformation of xenobiotics which can form reactive intermediates resulting in toxicological effects. These transcriptomics data reflect the early biological responses induced by E171 which precede tumour formation in an AOM/DSS mouse model.


Assuntos
Azoximetano/toxicidade , Neoplasias do Colo/genética , Transcriptoma/genética , Animais , Antioxidantes/metabolismo , Sulfato de Dextrana/toxicidade , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Estresse Oxidativo/efeitos dos fármacos , RNA Mensageiro/genética , Xenobióticos/metabolismo
7.
Data Brief ; 16: 531-600, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29264374

RESUMO

We investigated gene expression responses in BALB/c mice exposed by gavage to 5 mg/kg bw/day of E171 for 2, 7, 14 and 21 days. Food additive E171 (titanium dioxide) has been shown to induce oxidative stress and DNA damage in vitro as well as facilitating growth of colorectal tumours in vivo. Full genome expression changes of the colon of mice were investigated by using Agilent SurePrint G3 mouse Gene exp 60kv2 microarrays slides. The data presented in this DiB include all differentially expressed for each time point with EntrezGeneID, gene symbols, gene names and Log2FC as well as genes included in pathways after over-representation analysis in ConsensusPathDataBase. The functions of these genes in relation to the colon were described in our associated article (Proquin et al., 2017 in press) [1]. Raw and normalized gene expression data are available through NCBI GEO (GEO accession: GSE92563).

8.
Food Chem Toxicol ; 111: 153-165, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29128614

RESUMO

Dietary factors that may influence the risks of colorectal cancer, including specific supplements, are under investigation. Previous studies showed the capacity of food additive titanium dioxide (E171) to induce DNA damage in vitro and facilitate growth of colorectal tumours in vivo. This study aimed to investigate the molecular mechanisms behind these effects after E171 exposure. BALB/c mice were exposed by gavage to 5 mg/kgbw/day of E171 for 2, 7, 14, and 21 days. Transcriptome changes were studied by whole genome mRNA microarray analysis on the mice's distal colons. In addition, histopathological changes as well as a proliferation marker were analysed. The results showed significant gene expression changes in the olfactory/GPCR receptor family, oxidative stress, the immune system and of cancer related genes. Transcriptome analysis also identified genes that thus far have not been included in known biological pathways and can induce functional changes by interacting with other genes involved in different biological pathways. Histopathological analysis showed alteration and disruption in the normal structure of crypts inducing a hyperplastic epithelium. At cell proliferation level, no consistent increase over time was observed. These results may offer a mechanistic framework for the enhanced tumour growth after ingestion of E171 in BALB/c mice.


Assuntos
Aditivos Alimentares/farmacologia , Titânio/farmacologia , Transcriptoma/efeitos dos fármacos , Animais , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
9.
Sci Rep ; 6: 20544, 2016 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-26837704

RESUMO

The utility of blood-based omic profiles for linking environmental exposures to their potential health effects was evaluated in 649 individuals, drawn from the general population, in relation to tobacco smoking, an exposure with well-characterised health effects. Using disease connectivity analysis, we found that the combination of smoking-modified, genome-wide gene (including miRNA) expression and DNA methylation profiles predicts with remarkable reliability most diseases and conditions independently known to be causally associated with smoking (indicative estimates of sensitivity and positive predictive value 94% and 84%, respectively). Bioinformatics analysis reveals the importance of a small number of smoking-modified, master-regulatory genes and suggest a central role for altered ubiquitination. The smoking-induced gene expression profiles overlap significantly with profiles present in blood cells of patients with lung cancer or coronary heart disease, diseases strongly associated with tobacco smoking. These results provide proof-of-principle support to the suggestion that omic profiling in peripheral blood has the potential of identifying early, disease-related perturbations caused by toxic exposures and may be a useful tool in hazard and risk assessment.


Assuntos
Metilação de DNA , Perfilação da Expressão Gênica/métodos , Estudo de Associação Genômica Ampla/métodos , Fumar/genética , Biologia Computacional/métodos , Doença da Artéria Coronariana/genética , Exposição Ambiental , Saúde Ambiental , Feminino , Predisposição Genética para Doença , Humanos , Neoplasias Pulmonares/genética , Masculino , Pessoa de Meia-Idade , Fumar/sangue
10.
Toxicology ; 323: 61-9, 2014 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-24949552

RESUMO

Large differences in toxicity responses occur within the human population. In this study we evaluate whether interindividual variation in baseline enzyme activity (EA)/gene expression (GE) levels in liver predispose for the variation in toxicity responses by assessing dose-response relationships for several prototypical hepatotoxicants. Baseline levels of cytochrome-P450 (CYP) GE/EA were measured in precision-cut human liver slices. Slices (n=4-5/compound) were exposed to a dose-range of acetaminophen, aflatoxin B1, benzo(α) pyrene or 2-nitrofluorene. Interindividual variation in induced genotoxicity (COMET-assay and CDKN1A/p21 GE) and cytotoxicity (lactate dehydrogenase-leakage), combined with NQO1- and GSTM1-induced GE-responses for oxidative stress and GE-responses of several CYPs was evaluated. The benchmark dose-approach was applied as a tool to model exposure responses on an individual level. Variation in baseline CYP levels, both GE and EA, can explain variation in compound exposure-responses on an individual level. Network analyses enable the definition of key parameters influencing interindividual variation after compound exposure. For 2-nitrofluorene, this analysis suggests involvement of CYP1B1 in the metabolism of this compound, which represents a novel finding. In this study, GSTM1 which is known to be highly polymorphic within the human population, but so far could not be linked to toxicity in acetaminophen-poisoned patients, is suggested to cause interindividual variability in acetaminophen-metabolism, dependent on the individual's gene expression-responses of CYP-enzymes. This study demonstrates that using interindividual variation within network modelling provides a source for the definition of essential and even new parameters involved in compound-related metabolism. This information might enable ways to make more quantitative estimates of human risks.


Assuntos
Fígado/efeitos dos fármacos , Xenobióticos/toxicidade , Acetaminofen/toxicidade , Aflatoxina B1/toxicidade , Benzo(a)pireno/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Ensaio Cometa , Sistema Enzimático do Citocromo P-450/genética , Dano ao DNA , Fluorenos/toxicidade , Expressão Gênica , Glutationa Transferase/genética , Humanos , L-Lactato Desidrogenase/metabolismo , Fígado/metabolismo , NAD(P)H Desidrogenase (Quinona)/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA