Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Drug Deliv Rev ; 209: 115315, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38670230

RESUMO

Immunotherapies have been transformative in many areas, including cancer treatments, allergies, and autoimmune diseases. However, significant challenges persist in extending the reach of these technologies to new indications and patients. Some of the major hurdles include narrow applicability to patient groups, transient efficacy, high cost burdens, poor immunogenicity, and side effects or off-target toxicity that results from lack of disease-specificity and inefficient delivery. Thus, there is a significant need for strategies that control immune responses generated by immunotherapies while targeting infection, cancer, allergy, and autoimmunity. Being the outermost barrier of the body and the first line of host defense, the skin presents a unique immunological interface to achieve these goals. The skin contains a high concentration of specialized immune cells, such as antigen-presenting cells and tissue-resident memory T cells. These cells feature diverse and potent combinations of immune receptors, providing access to cellular and molecular level control to modulate immune responses. Thus, skin provides accessible tissue, cellular, and molecular level controls that can be harnessed to improve immunotherapies. Biomaterial platforms - microneedles, nano- and micro-particles, scaffolds, and other technologies - are uniquely capable of modulating the specialized immunological niche in skin by targeting these distinct biological levels of control. This review highlights recent pre-clinical and clinical advances in biomaterial-based approaches to target and modulate immune signaling in the skin at the tissue, cellular, and molecular levels for immunotherapeutic applications. We begin by discussing skin cytoarchitecture and resident immune cells to establish the biological rationale for skin-targeting immunotherapies. This is followed by a critical presentation of biomaterial-based pre-clinical and clinical studies aimed at controlling the immune response in the skin for immunotherapy and therapeutic vaccine applications in cancer, allergy, and autoimmunity.


Assuntos
Materiais Biocompatíveis , Imunoterapia , Pele , Humanos , Imunoterapia/métodos , Materiais Biocompatíveis/administração & dosagem , Pele/imunologia , Pele/metabolismo , Animais , Transdução de Sinais , Sistemas de Liberação de Medicamentos
2.
Theranostics ; 14(5): 2265-2289, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38505610

RESUMO

Extracellular vesicles (EVs) are produced by all cells in the body. These biological nanoparticles facilitate cellular communication through the transport of diverse cargoes, including small molecules, proteins, and nucleic acids. mRNA cargoes have gained particular interest given their role in the translation of functional proteins. As a biomarker platform, EVs can be found in nearly all biofluids-blood, mucus, urine, cerebrospinal fluid, and saliva-providing real-time insight into parent cell and tissue function. mRNAs carried by EVs are protected from degradation, resulting in improved detection compared to free mRNA, and recent work demonstrates promising results in using these mRNA cargoes as biomarkers for cancer, neurological diseases, infectious diseases, and gynecologic and obstetric outcomes. Furthermore, given the innate cargo carrying, targeting, and barrier crossing abilities of EVs, these structures have been proposed as therapeutic carriers of mRNA. Recent advances demonstrate methods for loading mRNAs into EVs for a range of disease indications. Here, we review recent studies using EVs and their mRNA cargoes as diagnostics and therapeutics. We discuss challenges associated with EVs in diagnostic and therapeutic applications and highlight opportunities for future development.


Assuntos
Vesículas Extracelulares , Neoplasias , Feminino , Humanos , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Biomarcadores/metabolismo , Proteínas/metabolismo , Neoplasias/terapia , Comunicação Celular
3.
Sci Immunol ; 9(91): eadi9517, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38241401

RESUMO

Whereas CD4+ T cells conventionally mediate antitumor immunity by providing help to CD8+ T cells, recent clinical studies have implied an important role for cytotoxic CD4+ T cells in cancer immunity. Using an orthotopic melanoma model, we provide a detailed account of antitumoral CD4+ T cell responses and their regulation by major histocompatibility complex class II (MHC II) in the skin. Intravital imaging revealed prominent interactions of CD4+ T cells with tumor debris-laden MHC II+ host antigen-presenting cells that accumulated around tumor cell nests, although direct recognition of MHC II+ melanoma cells alone could also promote CD4+ T cell control. CD4+ T cells stably suppressed or eradicated tumors even in the absence of other lymphocytes by using tumor necrosis factor-α and Fas ligand (FasL) but not perforin-mediated cytotoxicity. Interferon-γ was critical for protection, acting both directly on melanoma cells and via induction of nitric oxide synthase in myeloid cells. Our results illustrate multifaceted and context-specific aspects of MHC II-dependent CD4+ T cell immunity against cutaneous melanoma, emphasizing modulation of this axis as a potential avenue for immunotherapies.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Linfócitos T CD8-Positivos , Linfócitos T CD4-Positivos , Antígenos de Histocompatibilidade Classe II , Antígenos HLA
4.
Adv Drug Deliv Rev ; 204: 115122, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37935318

RESUMO

Metabolic programming and reprogramming have emerged as pivotal mechanisms for altering immune cell function. Thus, immunometabolism has become an attractive target area for treatment of immune-mediated disorders. Nonetheless, many hurdles to delivering metabolic cues persist. In this review, we consider how biomaterials are poised to transform manipulation of immune cell metabolism through integrated control of metabolic configurations to affect outcomes in autoimmunity, regeneration, transplant, and cancer. We emphasize the features of nanoparticles and other biomaterials that permit delivery of metabolic cues to the intracellular compartment of immune cells, or strategies for altering signals in the extracellular space. We then provide perspectives on the potential for reciprocal regulation of immunometabolism by the physical properties of materials themselves. Lastly, opportunities for clinical translation are highlighted. This discussion contributes to our understanding of immunometabolism, biomaterials-based strategies for altering metabolic configurations in immune cells, and emerging concepts in this evolving field.


Assuntos
Materiais Biocompatíveis , Neoplasias , Humanos , Neoplasias/terapia
5.
Cancer Cell ; 41(9): 1662-1679.e7, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37625402

RESUMO

Stem-like CD8+ T cells are regulated by T cell factor 1 (TCF1) and are considered requisite for immune checkpoint blockade (ICB) response. However, recent findings indicate that reliance on TCF1+CD8+ T cells for ICB efficacy may differ across tumor contexts. We find that TCF1 is essential for optimal priming of tumor antigen-specific CD8+ T cells and ICB response in poorly immunogenic tumors that accumulate TOX+ dysfunctional T cells, but is dispensable for T cell priming and therapy response in highly immunogenic tumors that efficiently expand transitory effectors. Importantly, improving T cell priming by vaccination or by enhancing antigen presentation on tumors rescues the defective responses of TCF1-deficient CD8+ T cells upon ICB in poorly immunogenic tumors. Our study highlights TCF1's role during the early stages of anti-tumor CD8+ T cell responses with important implications for guiding optimal therapeutic interventions in cancers with low TCF1+CD8+ T cells and low-neo-antigen expression.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Fator 1 de Transcrição de Linfócitos T , Humanos , Anticorpos , Antígenos de Neoplasias , Imunoterapia , Fator 1 de Transcrição de Linfócitos T/genética , Neoplasias/imunologia , Neoplasias/terapia
6.
Adv Mater ; 35(52): e2302410, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37380199

RESUMO

Microneedle arrays (MNAs) are small patches containing hundreds of short projections that deliver signals directly to dermal layers without causing pain. These technologies are of special interest for immunotherapy and vaccine delivery because they directly target immune cells concentrated in the skin. The targeting abilities of MNAs result in efficient immune responses-often more protective or therapeutic-compared to conventional needle delivery. MNAs also offer logistical benefits, such as self-administration and transportation without refrigeration. Thus, numerous preclinical and clinical studies are exploring these technologies. Here the unique advantages of MNA, as well as critical challenges-such as manufacturing and sterility issues-the field faces to enable widespread deployment are discussed. How MNA design parameters can be exploited for controlled release of vaccines and immunotherapies, and the application to preclinical models of infection, cancer, autoimmunity, and allergies are explained. Specific strategies are also discussed to reduce off-target effects compared to conventional vaccine delivery routes, and novel chemical and manufacturing controls that enable cargo stability in MNAs across flexible intervals and temperatures. Clinical research using MNAs is then examined. Drawbacks of MNAs and the implications, and emerging opportunities to exploit MNAs for immune engineering and clinical use are concluded.


Assuntos
Pele , Vacinas , Imunoterapia , Sistemas de Liberação de Medicamentos
7.
Lancet Neurol ; 22(7): 578-590, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37353278

RESUMO

BACKGROUND: Chimeric antigen receptor (CAR) T cells are highly effective in treating haematological malignancies, but associated toxicities and the need for lymphodepletion limit their use in people with autoimmune disease. To explore the use of CAR T cells for the treatment of people with autoimmune disease, and to improve their safety, we engineered them with RNA (rCAR-T)-rather than the conventional DNA approach-to target B-cell maturation antigen (BCMA) expressed on plasma cells. To test the suitability of our approach, we used rCAR-T to treat individuals with myasthenia gravis, a prototypical autoantibody disease mediated partly by pathogenic plasma cells. METHODS: MG-001 was a prospective, multicentre, open-label, phase 1b/2a study of Descartes-08, an autologous anti-BCMA rCAR-T therapy, in adults (ie, aged ≥18 years) with generalised myasthenia gravis and a Myasthenia Gravis Activities of Daily Living (MG-ADL) score of 6 or higher. The study was done at eight sites (ie, academic medical centres or community neurology clinics) in the USA. Lymphodepletion chemotherapy was not used. In part 1 (phase 1b), participants with Myasthenia Gravis Foundation of America (MGFA) disease class III-IV generalised myasthenia gravis received three ascending doses of Descartes-08 to determine a maximum tolerated dose. In part 2 (phase 2a), participants with generalised myasthenia gravis with MGFA disease class II-IV received six doses at the maximum tolerated dose in an outpatient setting. The primary objective was to establish safety and tolerability of Descartes-08; secondary objectives were to assess myasthenia gravis disease severity and biomarkers in participants who received Descartes-08. This trial is registered with clinicaltrials.gov, NCT04146051. FINDINGS: We recruited 16 individuals for screening between Jan 7, 2020 and Aug 3, 2022. 14 participants were enrolled (n=3 in part 1, n=11 in part 2). Ten participants were women and four were men. Two individuals did not qualify due to low baseline MG-ADL score (n=1) or lack of generalised disease (n=1). Median follow-up in part 2 was 5 months (range 3-9 months). There was no dose-limiting toxicity, cytokine release syndrome, or neurotoxicity. Common adverse events were headache (six of 14 participants), nausea (five of 14), vomiting (three of 14), and fever (four of 14), which resolved within 24 h of infusion. Fevers were not associated with increased markers of cytokine release syndrome (IL-6, IL-2, and TNF). Mean improvements from baseline to week 12 were -6 (95% CI -9 to -3) for MG-ADL score, -7 (-11 to -3) for Quantitative Myasthenia Gravis score, -14 (-19 to -9) for Myasthenia Gravis Composite score, and -9 (-15 to -3) for Myasthenia Gravis Quality of Life 15-revised score. INTERPRETATION: In this first study of an rCAR-T therapy in individuals with an autoimmune disease, Descartes-08 appeared to be safe and was well tolerated. Descartes-08 infusions were followed by clinically meaningful decreases on myasthenia gravis severity scales at up to 9 months of follow-up. rCAR-T therapy warrants further investigation as a potential new treatment approach for individuals with myasthenia gravis and other autoimmune diseases. FUNDING: Cartesian Therapeutics and National Institute of Neurological Disorders and Stroke of the National Institutes of Health.


Assuntos
Miastenia Gravis , Receptores de Antígenos Quiméricos , Adolescente , Adulto , Feminino , Humanos , Masculino , Atividades Cotidianas , Autoanticorpos , Terapia Baseada em Transplante de Células e Tecidos , Síndrome da Liberação de Citocina , Miastenia Gravis/tratamento farmacológico , Estudos Prospectivos , Qualidade de Vida , Receptores de Antígenos Quiméricos/uso terapêutico , Resultado do Tratamento
8.
ACS Cent Sci ; 9(4): 844, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37122466

RESUMO

[This retracts the article DOI: 10.1021/acscentsci.8b00050.].

9.
ACS Appl Bio Mater ; 6(6): 2017-2028, 2023 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-37068126

RESUMO

Immunotherapies are an evolving treatment paradigm for addressing cancer, autoimmunity, and infection. While exciting, most of the existing therapies are limited by their specificity─unable to differentiate between healthy and diseased cells at an antigen-specific level. Biomaterials are a powerful tool that enable the development of next-generation immunotherapies due to their tunable synthesis properties. Our lab harnesses biomaterials as tools to study antigen-specific immunity and as technologies to enable new therapeutic vaccines and immunotherapies to combat cancer, autoimmunity, and infections. Our efforts have spanned the study of intrinsic immune profiles of biomaterials, development of novel nanotechnologies assembled entirely from immune cues, manipulation of innate immune signaling, and advanced technologies to direct and control specialized immune niches such as skin and lymph nodes.


Assuntos
Materiais Biocompatíveis , Neoplasias , Humanos , Materiais Biocompatíveis/uso terapêutico , Materiais Biocompatíveis/química , Imunoterapia , Antígenos , Transdução de Sinais , Neoplasias/tratamento farmacológico
10.
Adv Sci (Weinh) ; : e2202393, 2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36373708

RESUMO

Recent clinical studies show activating multiple innate immune pathways drives robust responses in infection and cancer. Biomaterials offer useful features to deliver multiple cargos, but add translational complexity and intrinsic immune signatures that complicate rational design. Here a modular adjuvant platform is created using self-assembly to build nanostructured capsules comprised entirely of antigens and multiple classes of toll-like receptor agonists (TLRas). These assemblies sequester TLR to endolysosomes, allowing programmable control over the relative signaling levels transduced through these receptors. Strikingly, this combinatorial control of innate signaling can generate divergent antigen-specific responses against a particular antigen. These assemblies drive reorganization of lymph node stroma to a pro-immune microenvironment, expanding antigen-specific T cells. Excitingly, assemblies built from antigen and multiple TLRas enhance T cell function and antitumor efficacy compared to ad-mixed formulations or capsules with a single TLRa. Finally, capsules built from a clinically relevant human melanoma antigen and up to three TLRa classes enable simultaneous control of signal transduction across each pathway. This creates a facile adjuvant design platform to tailor signaling for vaccines and immunotherapies without using carrier components. The modular nature supports precision juxtaposition of antigen with agonists relevant for several innate receptor families, such as toll, STING, NOD, and RIG.

11.
Biomater Sci ; 10(16): 4612-4626, 2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-35796247

RESUMO

Recently approved cancer immunotherapies - including CAR-T cells and cancer vaccination, - show great promise. However, these technologies are hindered by the complexity and cost of isolating and engineering patient cells ex vivo. Lymph nodes (LNs) are key tissues that integrate immune signals to coordinate adaptive immunity. Directly controlling the signals and local environment in LNs could enable potent and safe immunotherapies without cell isolation, engineering, and reinfusion. Here we employ intra-LN (i.LN.) injection of immune signal-loaded biomaterial depots to directly control cancer vaccine deposition, revealing how the combination and geographic distribution of signals in and between LNs impact anti-tumor response. We show in healthy and diseased mice that relative proximity of antigen and adjuvant in LNs - and to tumors - defines unique local and systemic characteristics of innate and adaptive response. These factors ultimately control survival in mouse models of lymphoma and melanoma. Of note, with appropriate geographic signal distributions, a single i.LN. vaccine treatment confers near-complete survival to tumor challenge and re-challenge 100 days later, without additional treatments. These data inform design criteria for immunotherapies that leverage biomaterials for loco-regional LN therapy to generate responses that are systemic and specific, without systemically exposing patients to potent or immunotoxic drugs.


Assuntos
Vacinas Anticâncer , Melanoma , Animais , Sinais (Psicologia) , Linfonodos , Melanoma/terapia , Camundongos , Resultado do Tratamento , Vacinação
12.
Breast Cancer Res ; 24(1): 13, 2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35164808

RESUMO

Clinical cancer imaging focuses on tumor growth rather than metastatic phenotypes. The microtubule-depolymerizing drug, Vinorelbine, reduced the metastatic phenotypes of microtentacles, reattachment and tumor cell clustering more than tumor cell viability. Treating mice with Vinorelbine for only 24 h had no significant effect on primary tumor survival, but median metastatic tumor survival was extended from 8 to 30 weeks. Microtentacle inhibition by Vinorelbine was also detectable within 1 h, using tumor cells isolated from blood samples. As few as 11 tumor cells were sufficient to yield 90% power to detect this 1 h Vinorelbine drug response, demonstrating feasibility with the small number of tumor cells available from patient biopsies. This study establishes a proof-of-concept that targeted microtubule disruption can selectively inhibit metastasis and reveals that existing FDA-approved therapies could have anti-metastatic actions that are currently overlooked when focusing exclusively on tumor growth.


Assuntos
Neoplasias da Mama , Animais , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Microtúbulos , Metástase Neoplásica , Vinorelbina/farmacologia
13.
Cancers (Basel) ; 14(3)2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35159067

RESUMO

BACKGROUND: The development of chemoresistance to paclitaxel and carboplatin represents a major therapeutic challenge in ovarian cancer, a disease frequently characterized by malignant ascites and extrapelvic metastasis. Microtentacles (McTNs) are tubulin-based projections observed in detached breast cancer cells. In this study, we investigated whether ovarian cancers exhibit McTNs and characterized McTN biology. METHODS: We used an established lipid-tethering mechanism to suspend and image individual cancer cells. We queried a panel of immortalized serous (OSC) and clear cell (OCCC) cell lines as well as freshly procured ascites and human ovarian surface epithelium (HOSE). We assessed by Western blot ß-tubulin isotype, α-tubulin post-translational modifications and actin regulatory proteins in attached/detached states. We studied clustering in suspended conditions. Effects of treatment with microtubule depolymerizing and stabilizing drugs were described. RESULTS: Among cell lines, up to 30% of cells expressed McTNs. Four McTN morphologies (absent, symmetric-short, symmetric-long, tufted) were observed in immortalized cultures as well as ascites. McTN number/length varied with histology according to metastatic potential. Most OCCC overexpressed class III ß-tubulin. OCCC/OSC cell lines exhibited a trend towards more microtubule-stabilizing post-translational modifications of α-tubulin relative to HOSE. Microtubule depolymerizing drugs decreased the number/length of McTNs, confirming that McTNs are composed of tubulin. Cells that failed to form McTNs demonstrated differential expression of α-tubulin- and actin-regulating proteins relative to cells that form McTNs. Cluster formation is more susceptible to microtubule targeting agents in cells that form McTNs, suggesting a role for McTNs in aggregation. CONCLUSIONS: McTNs likely participate in key aspects of ovarian cancer metastasis. McTNs represent a new therapeutic target for this disease that could refine therapies, including intraperitoneal drug delivery.

14.
ACS Cent Sci ; 7(5): 909, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34079906

RESUMO

[This corrects the article DOI: 10.1021/acscentsci.8b00050.].

15.
Nano Lett ; 21(9): 3762-3771, 2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33881872

RESUMO

Outcomes during immunotherapy are impacted not only by the specific therapeutic signals and pharmacodynamics, but also by the biophysical forms in which signals are delivered. This integration is determinative in autoimmunity because the disease is caused by immune dysregulation and inflammation. Unfortunately, the links between nanomaterial design, biophysical properties, and immune regulation are poorly defined. Here we designed cationic peptide antigens with defined charge distributions and then used electrostatics to assemble these peptides into complexes with anionic regulatory cues. We first show complexes induce antigen-specific tolerance during myelin-driven autoimmunity. We next show the affinity between these immune cues is controlled by charge balance and that affinity confers distinct biophysical properties important in immunological processing, including antigen availability. The underlying binding affinities between the self-assembled signals influences inflammatory gene expression in dendritic cells and antigen-specific regulatory outcomes in self-reactive transgenic T cells. This granular understanding of nanomaterial-immune interactions contributes to a more rational immunotherapy design.


Assuntos
Imunoterapia , Linfócitos T , Antígenos , Imunidade , Peptídeos
16.
Sci Rep ; 11(1): 3214, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33547369

RESUMO

Mammosphere assays are widely used in vitro to identify prospective cancer-initiating stem cells that can propagate clonally to form spheres in free-floating conditions. However, the traditional mammosphere assay inevitably introduces cell aggregation that interferes with the measurement of true mammosphere forming efficiency. We developed a method to reduce tumor cell aggregation and increase the probability that the observed mammospheres formed are clonal in origin. Tethering individual tumor cells to lipid anchors prevents cell drift while maintaining free-floating characteristics. This enables real-time monitoring of single tumor cells as they divide to form mammospheres. Monitoring tethered breast cancer cells provided detailed size information that correlates directly to previously published single cell tracking data. We observed that 71% of the Day 7 spheres in lipid-coated wells were between 50 and 150 µm compared to only 37% in traditional low attachment plates. When an equal mixture of MCF7-GFP and MCF7-mCherry cells were seeded, 65% of the mammospheres in lipid-coated wells demonstrated single color expression whereas only 32% were single-colored in low attachment wells. These results indicate that using lipid tethering for mammosphere growth assays can reduce the confounding factor of cell aggregation and increase the formation of clonal mammospheres.


Assuntos
Neoplasias da Mama/patologia , Mama/patologia , Agregação Celular , Técnicas de Cultura de Células , Feminino , Humanos , Lipídeos/química , Células MCF-7 , Esferoides Celulares/patologia , Células Tumorais Cultivadas
17.
Acc Chem Res ; 53(11): 2534-2545, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33074649

RESUMO

Immunotherapies harness an individual's immune system to battle diseases such as cancer and autoimmunity. During cancer, the immune system often fails to detect and destroy cancerous cells, whereas during autoimmune disease, the immune system mistakenly attacks self-tissue. Immunotherapies can help guide more effective responses in these settings, as evidenced by recent advances with monoclonal antibodies and adoptive cell therapies. However, despite the transformative gains of immunotherapies for patients, many therapies are not curative, work only for a small subset of patients, and lack specificity in distinguishing between healthy and diseased cells, which can cause severe side effects. From this perspective, self-assembled biomaterials are promising technologies that could help address some of the limitations facing immunotherapies. For example, self-assembly allows precision control over the combination and relative concentration of immune cues and directed cargo display densities. These capabilities support selectivity and potency that could decrease off-target effects and enable modular or personalized immunotherapies. The underlying forces driving self-assembly of most systems in aqueous solution result from hydrophobic interactions or charge polarity. In this Account, we highlight how these forces are being used to self-assemble immunotherapies for cancer and autoimmune disease.Hydrophobic interactions can create a range of intricate structures, including peptide nanofibers, nanogels, micelle-like particles, and in vivo assemblies with protein carriers. Certain nanofibers with hydrophobic domains uniquely benefit from the ability to elicit immune responses without additional stimulatory signals. This feature can reduce nonspecific inflammation but may also limit the nanofiber's application because of their inherent stimulatory properties. Micelle-like particles have been developed with the ability to incorporate a range of tumor-specific antigens for immunotherapies in mouse models of cancer. Key observations have revealed that both the total dose of antigen and display density of antigen per particle can impact immune response and efficacy of immunotherapies. These developments are promising benchmarks that could reveal design principles for engineering more specific and personalized immunotherapies.There has also been extensive work to develop platforms using electrostatic interactions to drive assembly of oppositely charged immune signals. These strategies benefit from the ability to tune biophysical interactions between components by altering the ratio of cationic to anionic charge during formulation, or the density of charge. Using a layer-by-layer assembly method, our lab developed hollow capsules composed entirely of immune signals for therapies in cancer and autoimmune disease models. This platform allowed for 100% of the immunotherapy to be composed of immune signals and completely prevents the onset of disease in a mouse model of multiple sclerosis. Layer-by-layer assembly has also been used to coat microneedle patches to target signals to immune cells in the dermal layer. As an alternative to layer-by-layer assembly, one step assembly can be achieved by mixing cationic and anionic components in solution. Additional approaches have created molecular structures that leverage hydrogen bonding for self-assembly. The creativity of engineered self-assembly has led to key insights that could benefit future immunotherapies and revealed aspects that require further study. The challenge now remains to utilize these insights to push development of new immunotherapeutics into clinical settings.


Assuntos
Doenças Autoimunes/terapia , Imunoterapia , Neoplasias/terapia , Adjuvantes Imunológicos/química , Adjuvantes Imunológicos/uso terapêutico , Animais , Antígenos/química , Antígenos/imunologia , Materiais Biocompatíveis/química , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Imunoterapia/métodos , Camundongos , Micelas , Nanofibras/química , Peptídeos/química , Peptídeos/imunologia , Peptídeos/uso terapêutico , Eletricidade Estática
18.
Lab Chip ; 20(16): 2872-2888, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32744284

RESUMO

The technical challenges of imaging non-adherent tumor cells pose a critical barrier to understanding tumor cell responses to the non-adherent microenvironments of metastasis, like the bloodstream or lymphatics. In this study, we optimized a microfluidic device (TetherChip) engineered to prevent cell adhesion with an optically-clear, thermal-crosslinked polyelectrolyte multilayer nanosurface and a terminal lipid layer that simultaneously tethers the cell membrane for improved spatial immobilization. Thermal imidization of the TetherChip nanosurface on commercially-available microfluidic slides allows up to 98% of tumor cell capture by the lipid tethers. Importantly, time-lapse microscopy demonstrates that unique microtentacles on non-adherent tumor cells are rapidly destroyed during chemical fixation, but tethering microtentacles to the TetherChip surface efficiently preserves microtentacle structure post-fixation and post-blood isolation. TetherChips remain stable for more than 6 months, enabling shipment to distant sites. The broad retention capability of TetherChips allows comparison of multiple tumor cell types, revealing for the first time that carcinomas beyond breast cancer form microtentacles in suspension. Direct integration of TetherChips into the Vortex VTX-1 CTC isolation instrument shows that live CTCs from blood samples are efficiently captured on TetherChips for rapid fixation and same-day immunofluorescence analysis. Highly efficient and unbiased label-free capture of CTCs on a surface that allows rapid chemical fixation also establishes a streamlined clinical workflow to stabilize patient tumor cell samples and minimize analytical variables. While current studies focus primarily on CTC enumeration, this microfluidic device provides a novel platform for functional phenotype testing in CTCs with the ultimate goal of identifying anti-metastatic, patient-specific therapies.


Assuntos
Células Neoplásicas Circulantes , Adesão Celular , Contagem de Células , Linhagem Celular Tumoral , Membrana Celular , Separação Celular , Humanos , Polieletrólitos , Microambiente Tumoral
19.
Nat Biotechnol ; 38(3): 320-332, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31932728

RESUMO

Personalized cancer vaccines targeting patient-specific neoantigens are a promising cancer treatment modality; however, neoantigen physicochemical variability can present challenges to manufacturing personalized cancer vaccines in an optimal format for inducing anticancer T cells. Here, we developed a vaccine platform (SNP-7/8a) based on charge-modified peptide-TLR-7/8a conjugates that are chemically programmed to self-assemble into nanoparticles of uniform size (~20 nm) irrespective of the peptide antigen composition. This approach provided precise loading of diverse peptide neoantigens linked to TLR-7/8a (adjuvant) in nanoparticles, which increased uptake by and activation of antigen-presenting cells that promote T-cell immunity. Vaccination of mice with SNP-7/8a using predicted neoantigens (n = 179) from three tumor models induced CD8 T cells against ~50% of neoantigens with high predicted MHC-I binding affinity and led to enhanced tumor clearance. SNP-7/8a delivering in silico-designed mock neoantigens also induced CD8 T cells in nonhuman primates. Altogether, SNP-7/8a is a generalizable approach for codelivering peptide antigens and adjuvants in nanoparticles for inducing anticancer T-cell immunity.


Assuntos
Adjuvantes Imunológicos/química , Antígenos de Neoplasias/imunologia , Linfócitos T CD8-Positivos/metabolismo , Vacinas Anticâncer/administração & dosagem , Melanoma Experimental/tratamento farmacológico , Animais , Vacinas Anticâncer/imunologia , Linhagem Celular Tumoral , Melanoma Experimental/imunologia , Camundongos , Nanopartículas , Medicina de Precisão , Primatas , Receptor 7 Toll-Like/imunologia , Receptor 8 Toll-Like/imunologia , Vacinação , Vacinas Conjugadas
20.
Bioeng Transl Med ; 5(1): e10142, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31989033

RESUMO

Bacteriophages, or phages, are viruses that specifically infect bacteria and coopt the cellular machinery to create more phage proteins, eventually resulting in the release of new phage particles. Phages are heavily utilized in bioengineering for applications ranging from tissue engineering scaffolds to immune signal delivery. Of specific interest to vaccines and immunotherapies, phages have demonstrated an ability to activate both the innate and adaptive immune systems. The genome of these viral particles can be harnessed for DNA vaccination, or the surface proteins can be exploited for antigen display. More specifically, genes that encode an antigen of interest can be spliced into the phage genome, allowing antigenic proteins or peptides to be displayed by fusion to phage capsid proteins. Phages therefore present antigens to immune cells in a highly ordered and repetitive manner. This review discusses the use of phage with adjuvanting activity as antigen delivery vehicles for vaccination against infectious disease and cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA